Software-hardware co-design for fast and scalable training of deep learning recommendation models

Dheevatsa Mudigere, Y. Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liangchen Luo, J. Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang, E. K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yi-An Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishnaveni Dhulipala, Kranthi G. Kishore, Tyler N. Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen, M. Krishnan, A. Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, P. Bhattacharya, Petr Lapukhov, M. Naumov, A. Mathews, Lin Qiao, M. Smelyanskiy, Bill Jia, Vijay Rao
{"title":"Software-hardware co-design for fast and scalable training of deep learning recommendation models","authors":"Dheevatsa Mudigere, Y. Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liangchen Luo, J. Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang, E. K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yi-An Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishnaveni Dhulipala, Kranthi G. Kishore, Tyler N. Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen, M. Krishnan, A. Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, P. Bhattacharya, Petr Lapukhov, M. Naumov, A. Mathews, Lin Qiao, M. Smelyanskiy, Bill Jia, Vijay Rao","doi":"10.1145/3470496.3533727","DOIUrl":null,"url":null,"abstract":"Deep learning recommendation models (DLRMs) have been used across many business-critical services at Meta and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper, we present Neo, a software-hardware co-designed system for high-performance distributed training of large-scale DLRMs. Neo employs a novel 4D parallelism strategy that combines table-wise, row-wise, column-wise, and data parallelism for training massive embedding operators in DLRMs. In addition, Neo enables extremely high-performance and memory-efficient embedding computations using a variety of critical systems optimizations, including hybrid kernel fusion, software-managed caching, and quality-preserving compression. Finally, Neo is paired with ZionEX, a new hardware platform co-designed with Neo's 4D parallelism for optimizing communications for large-scale DLRM training. Our evaluation on 128 GPUs using 16 ZionEX nodes shows that Neo outperforms existing systems by up to 40× for training 12-trillion-parameter DLRM models deployed in production.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3533727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

Deep learning recommendation models (DLRMs) have been used across many business-critical services at Meta and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper, we present Neo, a software-hardware co-designed system for high-performance distributed training of large-scale DLRMs. Neo employs a novel 4D parallelism strategy that combines table-wise, row-wise, column-wise, and data parallelism for training massive embedding operators in DLRMs. In addition, Neo enables extremely high-performance and memory-efficient embedding computations using a variety of critical systems optimizations, including hybrid kernel fusion, software-managed caching, and quality-preserving compression. Finally, Neo is paired with ZionEX, a new hardware platform co-designed with Neo's 4D parallelism for optimizing communications for large-scale DLRM training. Our evaluation on 128 GPUs using 16 ZionEX nodes shows that Neo outperforms existing systems by up to 40× for training 12-trillion-parameter DLRM models deployed in production.
用于深度学习推荐模型快速和可扩展训练的软硬件协同设计
深度学习推荐模型(dlrm)已经在Meta的许多关键业务服务中使用,并且就其数据中心的基础设施需求而言,是单个最大的人工智能应用程序。在本文中,我们提出了一个用于大规模dlrm高性能分布式训练的软硬件协同设计系统Neo。Neo采用了一种新颖的4D并行策略,结合了表、行、列和数据并行性,用于训练dlrm中的大量嵌入算子。此外,Neo使用各种关键的系统优化,包括混合内核融合、软件管理缓存和质量保持压缩,实现了极其高性能和内存高效的嵌入计算。最后,Neo与ZionEX配对,ZionEX是一个新的硬件平台,与Neo的4D并行性共同设计,用于优化大规模DLRM培训的通信。我们对使用16个ZionEX节点的128个gpu的评估表明,在训练部署在生产中的12万亿参数DLRM模型时,Neo的性能比现有系统高出40倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信