Improving the Detection Performance of Sparse R-CNN with Different Necks

Zhaodong Zheng, Zefeng Zhang, Miao Fan, Lilian Huang
{"title":"Improving the Detection Performance of Sparse R-CNN with Different Necks","authors":"Zhaodong Zheng, Zefeng Zhang, Miao Fan, Lilian Huang","doi":"10.1145/3577117.3577135","DOIUrl":null,"url":null,"abstract":"Sparse R-CNN uses a purely sparse method to detect objects and achieves good results. However, it does not make full use of the features extracted from the image, so its detection performance needs to be further improved. And we propose Sparse R-CNNv1 and Sparse R-CNNv2. In these algorithms, we use VOVNet with attention mechanism to replace ResNet of the original Sparse R-CNN as our backbone. In addition, we also use two different improved neck networks, Augpan and FPNencoder, to further improve the detection performance of the algorithm from the perspective of feature fusion and increasing the receptive field of each layer, respectively. Our algorithms are trained and verified on COCO2017, and the experimental results show that Sparser-CNNv1 achieves 45.0 AP and Sparser-CNNV2 achieves 45.3 AP, higher than the original SparseR-CNN's 43.0 AP in standard 3× training schedule.","PeriodicalId":309874,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Image Processing","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577117.3577135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sparse R-CNN uses a purely sparse method to detect objects and achieves good results. However, it does not make full use of the features extracted from the image, so its detection performance needs to be further improved. And we propose Sparse R-CNNv1 and Sparse R-CNNv2. In these algorithms, we use VOVNet with attention mechanism to replace ResNet of the original Sparse R-CNN as our backbone. In addition, we also use two different improved neck networks, Augpan and FPNencoder, to further improve the detection performance of the algorithm from the perspective of feature fusion and increasing the receptive field of each layer, respectively. Our algorithms are trained and verified on COCO2017, and the experimental results show that Sparser-CNNv1 achieves 45.0 AP and Sparser-CNNV2 achieves 45.3 AP, higher than the original SparseR-CNN's 43.0 AP in standard 3× training schedule.
提高不同颈部稀疏R-CNN的检测性能
Sparse R-CNN使用纯稀疏的方法来检测物体,取得了很好的效果。但是,它没有充分利用从图像中提取的特征,因此其检测性能需要进一步提高。我们提出了稀疏R-CNNv1和稀疏R-CNNv2。在这些算法中,我们使用带有注意机制的VOVNet来取代原始稀疏R-CNN的ResNet作为我们的主干。此外,我们还使用了两种不同的改进颈部网络Augpan和FPNencoder,分别从特征融合和增加各层接受野的角度进一步提高了算法的检测性能。我们的算法在COCO2017上进行了训练和验证,实验结果表明,Sparser-CNNv1和Sparser-CNNV2在标准3倍训练计划下分别达到45.0 AP和45.3 AP,高于原始SparseR-CNN的43.0 AP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信