Valuation of Options Under Heston Stochastic Volatility Model Using Wavelets

D. Cerná, V. Finěk
{"title":"Valuation of Options Under Heston Stochastic Volatility Model Using Wavelets","authors":"D. Cerná, V. Finěk","doi":"10.1109/MCSI.2017.12","DOIUrl":null,"url":null,"abstract":"The paper is concerned with option pricing using the Heston stochastic volatility model. The Heston model is represented by parabolic boundary value problem. We use theta scheme for semidiscretization in time and we propose an adaptive wavelet method for solving the boundary value problem on the given time level. Furthermore, we construct a quadratic spline wavelet basis that is adapted to homogeneous Dirichlet boundary conditions on the part of the boundary and Neumann boundary conditions on the remaining part. The main advantage of the method is that the approximate solution is represented by small number of parameters. A numerical example is presented for a European call option.","PeriodicalId":113351,"journal":{"name":"2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is concerned with option pricing using the Heston stochastic volatility model. The Heston model is represented by parabolic boundary value problem. We use theta scheme for semidiscretization in time and we propose an adaptive wavelet method for solving the boundary value problem on the given time level. Furthermore, we construct a quadratic spline wavelet basis that is adapted to homogeneous Dirichlet boundary conditions on the part of the boundary and Neumann boundary conditions on the remaining part. The main advantage of the method is that the approximate solution is represented by small number of parameters. A numerical example is presented for a European call option.
基于小波的Heston随机波动模型下的期权估值
本文研究了基于赫斯顿随机波动率模型的期权定价问题。赫斯顿模型用抛物型边值问题来表示。我们使用theta格式在时间上进行半离散化,并提出了一种自适应小波方法来解决给定时间水平上的边值问题。在此基础上,构造了一个二次样条小波基,该基部分适用于齐次Dirichlet边界条件,其余部分适用于Neumann边界条件。该方法的主要优点是近似解由少量参数表示。给出了欧式看涨期权的一个数值例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信