Significance measure of Local Cluster Neural Networks

R. Eickhoff, J. Sitte
{"title":"Significance measure of Local Cluster Neural Networks","authors":"R. Eickhoff, J. Sitte","doi":"10.1109/IJCNN.2007.4370950","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are intended to be used in emerging technologies as information processing systems because their biological equivalents seem to be tolerant to internal failures of computational elements. In this paper, we introduce a measurement which can identify significant neurons of the local cluster neural network and can be used to increase the fault tolerance of this network architecture. Furthermore, it show that this technique can control the network's complexity. Moreover, by this quality different parameter sets of the network and training techniques can be judged with respect to their fault tolerant properties.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks are intended to be used in emerging technologies as information processing systems because their biological equivalents seem to be tolerant to internal failures of computational elements. In this paper, we introduce a measurement which can identify significant neurons of the local cluster neural network and can be used to increase the fault tolerance of this network architecture. Furthermore, it show that this technique can control the network's complexity. Moreover, by this quality different parameter sets of the network and training techniques can be judged with respect to their fault tolerant properties.
局部聚类神经网络的显著性测度
人工神经网络被用作新兴技术中的信息处理系统,因为它们的生物等效物似乎能够容忍计算元素的内部故障。本文介绍了一种可以识别局部聚类神经网络中重要神经元的方法,该方法可以提高局部聚类神经网络的容错性。实验结果表明,该方法可以有效地控制网络的复杂度。此外,通过这种质量,可以根据网络和训练技术的容错特性来判断不同的参数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信