Clothing classification with smart phones

Huy Tran, Thanh Dang
{"title":"Clothing classification with smart phones","authors":"Huy Tran, Thanh Dang","doi":"10.1145/2641248.2666713","DOIUrl":null,"url":null,"abstract":"Human thermal comfort is significantly dependent on thermal insulation of clothing [3]. Therefore, classifying types of clothing a user is wearing plays an important role in enhancing human thermal comfort. In our work, we investigated different combinations of feature extraction methods and machine learning algorithms for clothing classification. We conducted our study using temperature and humidity data collected from smartphones in various contexts (inside and outside a pocket) and with different clothing types. We found that using six largest coefficients returned from Discrete Wavelet Transform with Support Vector Machines learning algorithm, we can achieve an accuracy of up to 0:71.","PeriodicalId":110421,"journal":{"name":"ISWC '14 Adjunct","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISWC '14 Adjunct","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2641248.2666713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human thermal comfort is significantly dependent on thermal insulation of clothing [3]. Therefore, classifying types of clothing a user is wearing plays an important role in enhancing human thermal comfort. In our work, we investigated different combinations of feature extraction methods and machine learning algorithms for clothing classification. We conducted our study using temperature and humidity data collected from smartphones in various contexts (inside and outside a pocket) and with different clothing types. We found that using six largest coefficients returned from Discrete Wavelet Transform with Support Vector Machines learning algorithm, we can achieve an accuracy of up to 0:71.
服装分类与智能手机
人体的热舒适很大程度上取决于服装的隔热性能[3]。因此,对用户穿着的服装类型进行分类,对提高人体热舒适性具有重要作用。在我们的工作中,我们研究了特征提取方法和机器学习算法的不同组合用于服装分类。我们使用智能手机在不同环境(口袋内外)和不同服装类型下收集的温度和湿度数据进行了研究。我们发现,使用支持向量机学习算法的离散小波变换返回的六个最大系数,我们可以实现高达0:71的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信