Deteksi Atap Bangunan Berbasis Citra Udara Menggunakan Google Colab dan Algoritma Deep Learning YOLOv7

Rangga Gelar Guntara
{"title":"Deteksi Atap Bangunan Berbasis Citra Udara Menggunakan Google Colab dan Algoritma Deep Learning YOLOv7","authors":"Rangga Gelar Guntara","doi":"10.59431/jmasif.v2i1.156","DOIUrl":null,"url":null,"abstract":"This article presents a deep learning-based approach for roof building detection in aerial imagery using the Yolov7 algorithm and Google Colab. We trained the Yolov7 model on a dataset of annotated aerial images and tested its performance on a testing set of 200 images. Our experimental results show that the Yolov7 model achieved an F1 score of 80% for roof building detection on the testing set, indicating that our approach can accurately detect roof buildings in aerial imagery. This approach can be useful in various applications, such as urban planning, disaster management, and infrastructure development. The availability of aerial imagery and the ability to use deep learning algorithms make it possible to automate the process of roof building detection, which can save time and resources. This research can be extended by investigating the use of other deep learning algorithms or combining multiple algorithms to improve the accuracy of roof building detection in aerial imagery.","PeriodicalId":262178,"journal":{"name":"Jurnal Manajemen Sistem Informasi (JMASIF)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Manajemen Sistem Informasi (JMASIF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59431/jmasif.v2i1.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a deep learning-based approach for roof building detection in aerial imagery using the Yolov7 algorithm and Google Colab. We trained the Yolov7 model on a dataset of annotated aerial images and tested its performance on a testing set of 200 images. Our experimental results show that the Yolov7 model achieved an F1 score of 80% for roof building detection on the testing set, indicating that our approach can accurately detect roof buildings in aerial imagery. This approach can be useful in various applications, such as urban planning, disaster management, and infrastructure development. The availability of aerial imagery and the ability to use deep learning algorithms make it possible to automate the process of roof building detection, which can save time and resources. This research can be extended by investigating the use of other deep learning algorithms or combining multiple algorithms to improve the accuracy of roof building detection in aerial imagery.
使用谷歌Colab和深学习算法YOLOv7,基于空中图像的屋顶检测
本文介绍了一种基于深度学习的方法,使用Yolov7算法和Google Colab在航空图像中检测屋顶建筑。我们在带注释的航空图像数据集上训练Yolov7模型,并在包含200张图像的测试集上测试其性能。我们的实验结果表明,Yolov7模型在测试集上的屋顶建筑检测F1得分达到80%,表明我们的方法可以准确地检测航空图像中的屋顶建筑。这种方法可用于各种应用程序,例如城市规划、灾害管理和基础设施开发。航空图像的可用性和使用深度学习算法的能力使屋顶建筑检测过程自动化成为可能,这可以节省时间和资源。本研究可以通过研究使用其他深度学习算法或结合多种算法来提高航空图像中屋顶建筑检测的准确性来扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信