Incremental Streaming Graph Partitioning

L. Durbeck, P. Athanas
{"title":"Incremental Streaming Graph Partitioning","authors":"L. Durbeck, P. Athanas","doi":"10.1109/HPEC43674.2020.9286181","DOIUrl":null,"url":null,"abstract":"Graph partitioning is an NP-hard problem whose efficient approximation has long been a subject of interest. The I/O bounds of contemporary computing environments favor incremental or streaming graph partitioning methods. Methods have sought a balance between latency, simplicity, accuracy, and memory size. In this paper, we apply an incremental approach to streaming partitioning that tracks changes with a lightweight proxy to trigger partitioning as the clustering error increases. We evaluate its performance on the DARPA/MIT Graph Challenge streaming stochastic block partition dataset, and find that it can dramatically reduce the invocation of partitioning, which can provide an order of magnitude speedup.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"432 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Graph partitioning is an NP-hard problem whose efficient approximation has long been a subject of interest. The I/O bounds of contemporary computing environments favor incremental or streaming graph partitioning methods. Methods have sought a balance between latency, simplicity, accuracy, and memory size. In this paper, we apply an incremental approach to streaming partitioning that tracks changes with a lightweight proxy to trigger partitioning as the clustering error increases. We evaluate its performance on the DARPA/MIT Graph Challenge streaming stochastic block partition dataset, and find that it can dramatically reduce the invocation of partitioning, which can provide an order of magnitude speedup.
增量流图分区
图划分是一个np困难问题,其有效逼近一直是人们感兴趣的主题。当代计算环境的I/O边界倾向于增量或流图分区方法。方法在延迟、简单性、准确性和内存大小之间寻求平衡。在本文中,我们对流分区应用了一种增量方法,该方法使用轻量级代理跟踪变化,以便在聚类错误增加时触发分区。我们在DARPA/MIT Graph Challenge流式随机块分区数据集上评估了它的性能,发现它可以显着减少分区的调用,这可以提供一个数量级的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信