Enhancement of PCA-Based Dimensionality Reduction Using BB-BC Optimization Algorithm

Supreet Kaur, C. Krishna, Shakti Kumar, Jasmeet Singh
{"title":"Enhancement of PCA-Based Dimensionality Reduction Using BB-BC Optimization Algorithm","authors":"Supreet Kaur, C. Krishna, Shakti Kumar, Jasmeet Singh","doi":"10.1109/IIPhDW54739.2023.10124414","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction is an important step for various applications where usage of the internet and multimedia systems is involved which requires huge bandwidth and storage space. This paper presents Big Bang-Big Crunch (BB-BC) optimization algorithm based two new approaches to feature selection for dimensionality reduction. In first approach, PCA is used to extract the features (eigenvectors) and defines feature set based on computation of knee point and BB-BC optimization algorithm, in turn selects an optimal subset from the predefined feature set. In the second approach, PCA is used only for feature extraction and BB-BC optimization algorithm is used for optimal feature selection from all extracted features. Olivetti Research Laboratory (ORL) face database has been used for performing the experiment and recognition rate is the parameter to be optimized for face recognition as an application area. The experimentation proves BB-BC as a powerful soft computing technique to solve such NP hard problems.","PeriodicalId":396821,"journal":{"name":"2023 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPhDW54739.2023.10124414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dimensionality reduction is an important step for various applications where usage of the internet and multimedia systems is involved which requires huge bandwidth and storage space. This paper presents Big Bang-Big Crunch (BB-BC) optimization algorithm based two new approaches to feature selection for dimensionality reduction. In first approach, PCA is used to extract the features (eigenvectors) and defines feature set based on computation of knee point and BB-BC optimization algorithm, in turn selects an optimal subset from the predefined feature set. In the second approach, PCA is used only for feature extraction and BB-BC optimization algorithm is used for optimal feature selection from all extracted features. Olivetti Research Laboratory (ORL) face database has been used for performing the experiment and recognition rate is the parameter to be optimized for face recognition as an application area. The experimentation proves BB-BC as a powerful soft computing technique to solve such NP hard problems.
利用BB-BC优化算法增强基于pca的降维
对于需要大量带宽和存储空间的互联网和多媒体系统的应用来说,降维是一个重要的步骤。提出了基于两种降维特征选择的大爆炸-大压缩(BB-BC)算法。第一种方法采用主成分分析法提取特征(特征向量),并基于膝点计算和BB-BC优化算法定义特征集,进而从预定义的特征集中选择最优子集;在第二种方法中,仅使用PCA进行特征提取,并使用BB-BC优化算法从所有提取的特征中进行最优特征选择。实验采用Olivetti研究实验室(ORL)的人脸数据库进行,人脸识别作为一个应用领域,识别率是需要优化的参数。实验证明BB-BC是解决这类NP困难问题的一种强大的软计算技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信