Steel-Free Hybrid FRP Stiffened Panel-Concrete Deck System

L. Cheng, V. Karbhari
{"title":"Steel-Free Hybrid FRP Stiffened Panel-Concrete Deck System","authors":"L. Cheng, V. Karbhari","doi":"10.14359/14858","DOIUrl":null,"url":null,"abstract":"Synopsis: This paper presents a design, analysis, and characterization of a hybrid deck system incorporating a thin Fiber Reinforced Polymer (FRP) stiffened hat-panel configured stay-in-place formwork that serves as flexural reinforcement with steel-free concrete poured on top. Quasi-static tests were conducted to first investigate the flexural behavior of the system. To understand the deck performance under traffic loads that induce repetitive stress cycles during the service life, a two-span continuous deck specimen (1.22 m wide) was tested by subjecting it to a total of 2.36 million cycles of load that simulates an AASHTO design truck with inclusion of the impact factor at both low and high magnitudes. The concrete-panel interfacial response due to the presence of sand and interlocking ribs was characterized by performing a series of 610 mm wide deck section tests, the results of which were used to calibrate a finiteelement (FE) based analytical model. The effect of the shear span-to-depth ratio, carbon fiber reinforcement ratio, and rib spacing were then evaluated by performing a parametric study using the calibrated nonlinear FE model. A simplified design approach is also proposed.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Synopsis: This paper presents a design, analysis, and characterization of a hybrid deck system incorporating a thin Fiber Reinforced Polymer (FRP) stiffened hat-panel configured stay-in-place formwork that serves as flexural reinforcement with steel-free concrete poured on top. Quasi-static tests were conducted to first investigate the flexural behavior of the system. To understand the deck performance under traffic loads that induce repetitive stress cycles during the service life, a two-span continuous deck specimen (1.22 m wide) was tested by subjecting it to a total of 2.36 million cycles of load that simulates an AASHTO design truck with inclusion of the impact factor at both low and high magnitudes. The concrete-panel interfacial response due to the presence of sand and interlocking ribs was characterized by performing a series of 610 mm wide deck section tests, the results of which were used to calibrate a finiteelement (FE) based analytical model. The effect of the shear span-to-depth ratio, carbon fiber reinforcement ratio, and rib spacing were then evaluated by performing a parametric study using the calibrated nonlinear FE model. A simplified design approach is also proposed.
无钢混合FRP加筋面板-混凝土甲板系统
摘要:本文介绍了一种混合甲板系统的设计、分析和特性,该系统采用薄纤维增强聚合物(FRP)加强帽板配置的原地模板,作为抗弯钢筋,顶部浇筑无钢混凝土。进行了准静态试验,首先研究了系统的弯曲行为。为了了解桥面在交通荷载作用下的性能,在使用寿命期间引起重复应力循环,对一个两跨连续桥面试件(1.22 m宽)进行了测试,模拟AASHTO设计卡车,包括低量级和高量级的冲击系数,总共承受了236万次荷载循环。通过一系列610 mm宽的桥面截面试验,研究了砂土和互锁肋对混凝土-面板界面响应的影响,其结果用于校准基于有限元(FE)的分析模型。然后,利用校正后的非线性有限元模型进行参数化研究,评估剪切跨深比、碳纤维配筋率和肋间距的影响。提出了一种简化的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信