Integrating spectral and textural features for urban land cover classification with hyperspectral data

B. Kumar, O. Dikshit
{"title":"Integrating spectral and textural features for urban land cover classification with hyperspectral data","authors":"B. Kumar, O. Dikshit","doi":"10.1109/JURSE.2015.7120517","DOIUrl":null,"url":null,"abstract":"This paper presents a supervised classification framework that integrates discrete wavelet transform (DWT) based spectral and textural features for the urban land cover classification using hyperspectral data. Investigations involved application of 1-D DWT along the wavelength dimension of the hyperspectral data followed by 2-D DWT along spatial dimensions for spectral and texture feature extraction respectively. The combined spectral textural feature set is used for classification. The pixel wise classification on ROSIS data using SVM reveals that integration of spectral and textural information can better characterize the urban areas and statistically significantly improves the classification accuracy.","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a supervised classification framework that integrates discrete wavelet transform (DWT) based spectral and textural features for the urban land cover classification using hyperspectral data. Investigations involved application of 1-D DWT along the wavelength dimension of the hyperspectral data followed by 2-D DWT along spatial dimensions for spectral and texture feature extraction respectively. The combined spectral textural feature set is used for classification. The pixel wise classification on ROSIS data using SVM reveals that integration of spectral and textural information can better characterize the urban areas and statistically significantly improves the classification accuracy.
结合光谱和纹理特征的城市土地覆盖分类与高光谱数据
提出了一种结合离散小波变换(DWT)光谱特征和纹理特征的监督分类框架,用于基于高光谱数据的城市土地覆盖分类。研究包括沿着高光谱数据的波长维度应用一维DWT,然后沿着空间维度分别应用二维DWT进行光谱和纹理特征提取。结合光谱纹理特征集进行分类。利用支持向量机对ROSIS数据进行逐像元分类,结果表明,光谱和纹理信息的融合能更好地表征城市区域,并显著提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信