Channel aware target localization in wireless sensor networks

O. Ozdemir, R. Niu, P. Varshney
{"title":"Channel aware target localization in wireless sensor networks","authors":"O. Ozdemir, R. Niu, P. Varshney","doi":"10.1109/ICIF.2007.4408075","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new maximum-likelihood (ML) target location estimator which uses quantized sensor data and wireless channel statistics in a wireless sensor network. The novelty of our approach comes from the fact that imperfect channel statistics between wireless sensors and the fusion center are incorporated in the localization algorithm. We call this approach \"channel-aware target localization\". Furthermore, we derive the Cramer-Rao lower bound as a performance bound for our channel-aware ML estimator. Simulation results are presented to show that the performance of the channel-aware ML location estimator is quite close to its theoretical performance bound even with relatively small number of sensors and it has superior performance compared to that of the channel-unaware ML estimator.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a new maximum-likelihood (ML) target location estimator which uses quantized sensor data and wireless channel statistics in a wireless sensor network. The novelty of our approach comes from the fact that imperfect channel statistics between wireless sensors and the fusion center are incorporated in the localization algorithm. We call this approach "channel-aware target localization". Furthermore, we derive the Cramer-Rao lower bound as a performance bound for our channel-aware ML estimator. Simulation results are presented to show that the performance of the channel-aware ML location estimator is quite close to its theoretical performance bound even with relatively small number of sensors and it has superior performance compared to that of the channel-unaware ML estimator.
无线传感器网络中信道感知的目标定位
在本文中,我们提出了一种新的最大似然(ML)目标位置估计器,该估计器在无线传感器网络中使用量化传感器数据和无线信道统计。该方法的新颖之处在于将无线传感器与融合中心之间的不完美信道统计信息纳入了定位算法。我们将这种方法称为“渠道感知目标定位”。此外,我们推导了Cramer-Rao下界作为我们的通道感知ML估计器的性能界。仿真结果表明,即使传感器数量相对较少,信道感知的机器学习位置估计器的性能也非常接近其理论性能界限,并且与信道不感知的机器学习估计器相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信