Yunhong Che, D. Stroe, Xin Sui, Sϕren Byg Vilsen, Xiaosong Hu, R. Teodorescu
{"title":"Battery Aging Behavior Evaluation Under Variable and Constant Temperatures with Real Loading Profiles","authors":"Yunhong Che, D. Stroe, Xin Sui, Sϕren Byg Vilsen, Xiaosong Hu, R. Teodorescu","doi":"10.1109/APEC43580.2023.10131534","DOIUrl":null,"url":null,"abstract":"Studying and analyzing battery aging behavior is crucial in battery health prognostic and management. This paper conducts novel and comprehensive experiments to evaluate battery aging under variable external stresses, including different dynamic load profiles and variable environmental temperatures. Respond analysis in the time and frequency domain is performed to account for the different aging rates under different current loadings, where the statistic calculation and fast Fourier transform are used for the analysis. The empirical model is used to fit the fade curve for the comparisons between constant and variable temperatures. The capacity decrease and internal resistance increase are extracted to evaluate capacity and power fade, respectively. The experimental results show that the urban dynamic operating conditions help to prolong the service life compared to the constant current aging case. In contrast, the aging under the highway profile accelerates the aging process. Although the average temperature is the same as under constant temperature conditions, variable temperature conditions accelerate battery aging.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Studying and analyzing battery aging behavior is crucial in battery health prognostic and management. This paper conducts novel and comprehensive experiments to evaluate battery aging under variable external stresses, including different dynamic load profiles and variable environmental temperatures. Respond analysis in the time and frequency domain is performed to account for the different aging rates under different current loadings, where the statistic calculation and fast Fourier transform are used for the analysis. The empirical model is used to fit the fade curve for the comparisons between constant and variable temperatures. The capacity decrease and internal resistance increase are extracted to evaluate capacity and power fade, respectively. The experimental results show that the urban dynamic operating conditions help to prolong the service life compared to the constant current aging case. In contrast, the aging under the highway profile accelerates the aging process. Although the average temperature is the same as under constant temperature conditions, variable temperature conditions accelerate battery aging.