Real-Time Binary Descriptor Based Background Modeling

Wan-Chen Liu, Shu-Zhe Lin, Min-Hsiang Yang, Chun-Rong Huang
{"title":"Real-Time Binary Descriptor Based Background Modeling","authors":"Wan-Chen Liu, Shu-Zhe Lin, Min-Hsiang Yang, Chun-Rong Huang","doi":"10.1109/ACPR.2013.125","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new binary descriptor based background modeling approach which is robust to lighting changes and dynamic backgrounds in the environment. Instead of using traditional parametric models, our background models are constructed by background instances using binary descriptors computed from observed backgrounds. As shown in the experiments, our method can achieve better foreground detection results and fewer false alarms compared to the state-of-the-art methods.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we propose a new binary descriptor based background modeling approach which is robust to lighting changes and dynamic backgrounds in the environment. Instead of using traditional parametric models, our background models are constructed by background instances using binary descriptors computed from observed backgrounds. As shown in the experiments, our method can achieve better foreground detection results and fewer false alarms compared to the state-of-the-art methods.
基于实时二进制描述符的背景建模
本文提出了一种新的基于二元描述符的背景建模方法,该方法对光照变化和环境中的动态背景具有鲁棒性。我们的背景模型不是使用传统的参数模型,而是使用从观测背景中计算出的二进制描述符来构建背景实例。实验表明,与现有的方法相比,我们的方法可以获得更好的前景检测结果,并且可以减少误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信