Inverse square rank fusion for multimodal search

André Mourão, Flávio Martins, João Magalhães
{"title":"Inverse square rank fusion for multimodal search","authors":"André Mourão, Flávio Martins, João Magalhães","doi":"10.1109/CBMI.2014.6849825","DOIUrl":null,"url":null,"abstract":"Rank fusion is the task of combining multiple ranked document lists (ranks) into a single ranked list. It is a late fusion approach designed to improve the rankings produced by individual systems. Rank fusion techniques have been applied throughout multiple domains: e.g. combining results from multiple retrieval functions, or multimodal search where several feature spaces are common. In this paper, we present the Inverse Square Rank fusion method family, a set of novel fully unsupervised rank fusion methods based on quadratic decay and on logarithmic document frequency normalization. Our experiments created with standard Information Retrieval datasets (image and text fusion) and image datasets (image features fusion), show that ISR outperforms existing rank fusion algorithms. Thus, the proposed technique has comparable or better performance than existing state-of-the-art approaches, while maintaining a low computational complexity and avoiding the need for document scores or training data.","PeriodicalId":103056,"journal":{"name":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2014.6849825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Rank fusion is the task of combining multiple ranked document lists (ranks) into a single ranked list. It is a late fusion approach designed to improve the rankings produced by individual systems. Rank fusion techniques have been applied throughout multiple domains: e.g. combining results from multiple retrieval functions, or multimodal search where several feature spaces are common. In this paper, we present the Inverse Square Rank fusion method family, a set of novel fully unsupervised rank fusion methods based on quadratic decay and on logarithmic document frequency normalization. Our experiments created with standard Information Retrieval datasets (image and text fusion) and image datasets (image features fusion), show that ISR outperforms existing rank fusion algorithms. Thus, the proposed technique has comparable or better performance than existing state-of-the-art approaches, while maintaining a low computational complexity and avoiding the need for document scores or training data.
多模态搜索的逆平方秩融合
排名融合是将多个排名的文档列表(排名)组合成单个排名列表的任务。这是一种最新的融合方法,旨在改善单个系统产生的排名。秩融合技术已经应用于多个领域:例如,组合多个检索函数的结果,或者多个特征空间共同的多模态搜索。本文提出了逆平方秩融合方法族,这是一种基于二次衰减和对数文档频率归一化的完全无监督秩融合方法。我们用标准信息检索数据集(图像和文本融合)和图像数据集(图像特征融合)创建的实验表明,ISR优于现有的秩融合算法。因此,所提出的技术具有与现有最先进的方法相当或更好的性能,同时保持较低的计算复杂性并避免对文档分数或训练数据的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信