Optimization method of aluminum electrolysis current efficiency based on LightGBM-TPE

Ying-lan Fang, Chenyang Liu, Zhenliang Li
{"title":"Optimization method of aluminum electrolysis current efficiency based on LightGBM-TPE","authors":"Ying-lan Fang, Chenyang Liu, Zhenliang Li","doi":"10.1117/12.2671649","DOIUrl":null,"url":null,"abstract":"The influencing factors of aluminum electrolysis production process are complex, and current efficiency is an important evaluation index. In order to study the influence of various parameters on the current efficiency in the aluminum electrolysis production process, a LightGBM-TPE current efficiency optimization model was established in this paper. First, the production data is preprocessed, and the industrial parameters are fitted using the LightGBM prediction model. Then, to further increase the model's prediction accuracy, the TPE optimization method is used to optimize the LightGBM hyperparameters. Finally, the optimization of current efficiency is realized through Optuna combined with TPE Bayesian optimization algorithm. The experimental results demonstrate that the model is capable of accurately identifying the realization conditions and process parameters of high current efficiency in the production process, as well as providing a parameter control foundation for the effective operation of the actual electrolytic aluminum production, ultimately achieving the goal of power consumption reduction.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The influencing factors of aluminum electrolysis production process are complex, and current efficiency is an important evaluation index. In order to study the influence of various parameters on the current efficiency in the aluminum electrolysis production process, a LightGBM-TPE current efficiency optimization model was established in this paper. First, the production data is preprocessed, and the industrial parameters are fitted using the LightGBM prediction model. Then, to further increase the model's prediction accuracy, the TPE optimization method is used to optimize the LightGBM hyperparameters. Finally, the optimization of current efficiency is realized through Optuna combined with TPE Bayesian optimization algorithm. The experimental results demonstrate that the model is capable of accurately identifying the realization conditions and process parameters of high current efficiency in the production process, as well as providing a parameter control foundation for the effective operation of the actual electrolytic aluminum production, ultimately achieving the goal of power consumption reduction.
基于LightGBM-TPE的铝电解电流效率优化方法
铝电解生产过程的影响因素复杂,电流效率是一个重要的评价指标。为了研究铝电解生产过程中各参数对电流效率的影响,本文建立了LightGBM-TPE电流效率优化模型。首先,对生产数据进行预处理,并采用LightGBM预测模型拟合工业参数。然后,为了进一步提高模型的预测精度,采用TPE优化方法对LightGBM超参数进行优化。最后,通过Optuna结合TPE贝叶斯优化算法实现电流效率的优化。实验结果表明,该模型能够准确识别生产过程中高电流效率的实现条件和工艺参数,为电解铝实际生产的有效运行提供参数控制基础,最终达到降低能耗的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信