LDV approach to circular trajectory tracking of the underactuated hovercraft model

F. Ariaei, E. Jonckheere
{"title":"LDV approach to circular trajectory tracking of the underactuated hovercraft model","authors":"F. Ariaei, E. Jonckheere","doi":"10.1109/ACC.2006.1657329","DOIUrl":null,"url":null,"abstract":"This paper shows that circular trajectory tracking of an underactuated hovercraft vehicle can be achieved by linear dynamically varying (LDV) techniques. LDV control is a technique for directing a controlled trajectory to be asymptotically synchronized with a preselected trajectory. A linearized tracking error model is obtained as a linear system parameterized by the nominal nonlinear dynamics. The nontrivial part of the LDV theory is to prove existence of a sufficiently well behaved solution to the partial differential Riccati equation. This in turn provides an exact solution to a Lyapunov inequality, showing that the underactuated hovercraft can be stabilized around the circular trajectory","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1657329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper shows that circular trajectory tracking of an underactuated hovercraft vehicle can be achieved by linear dynamically varying (LDV) techniques. LDV control is a technique for directing a controlled trajectory to be asymptotically synchronized with a preselected trajectory. A linearized tracking error model is obtained as a linear system parameterized by the nominal nonlinear dynamics. The nontrivial part of the LDV theory is to prove existence of a sufficiently well behaved solution to the partial differential Riccati equation. This in turn provides an exact solution to a Lyapunov inequality, showing that the underactuated hovercraft can be stabilized around the circular trajectory
欠驱动气垫船模型圆轨迹跟踪的LDV方法
研究表明,采用线性动态变化技术可以实现欠驱动气垫船的圆轨迹跟踪。LDV控制是一种指导受控轨迹与预定轨迹渐近同步的技术。将线性化的跟踪误差模型作为一个线性系统,用标称非线性动力学参数化。LDV理论的非平凡部分是证明了偏微分里卡第方程的一个足够好的解的存在性。这反过来又提供了Lyapunov不等式的精确解,表明欠驱动气垫船可以在圆形轨迹周围稳定
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信