A Deep Learning-Based Spatial and Temporal Data: Plant-Growing Case Study

Barakatullah Azizi, Narongrit Waraporn, Murray Leigh Ayres
{"title":"A Deep Learning-Based Spatial and Temporal Data: Plant-Growing Case Study","authors":"Barakatullah Azizi, Narongrit Waraporn, Murray Leigh Ayres","doi":"10.1109/KST53302.2022.9729064","DOIUrl":null,"url":null,"abstract":"Deep learning is a technique for image processing and data analysis with promising results and large potential. We investigated the performance of Deep Convolutional Neural Network (DCNN) for recognizing our spatiotemporal data in surveillance camera images. We studied how the magnitude of image dataset affected DCNN base models. We extracted spatialtemporal data into seven different interval datasets of Okra vegetation and applied them to two well-known convolutional networks; AlexNet and GoogLeNet. We experimented with spatiotemporal datasets on the convolutional networks and compared them in different epochs. The 1-Minute, 15-Minute, and 30-Minute periodic spatiotemporal datasets can achieve an excellent deep learning model with accuracy higher than 99% for both AlexNet and GoogLeNet.","PeriodicalId":433638,"journal":{"name":"2022 14th International Conference on Knowledge and Smart Technology (KST)","volume":"353 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST53302.2022.9729064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning is a technique for image processing and data analysis with promising results and large potential. We investigated the performance of Deep Convolutional Neural Network (DCNN) for recognizing our spatiotemporal data in surveillance camera images. We studied how the magnitude of image dataset affected DCNN base models. We extracted spatialtemporal data into seven different interval datasets of Okra vegetation and applied them to two well-known convolutional networks; AlexNet and GoogLeNet. We experimented with spatiotemporal datasets on the convolutional networks and compared them in different epochs. The 1-Minute, 15-Minute, and 30-Minute periodic spatiotemporal datasets can achieve an excellent deep learning model with accuracy higher than 99% for both AlexNet and GoogLeNet.
基于深度学习的时空数据:植物生长案例研究
深度学习是一种图像处理和数据分析的技术,具有良好的结果和巨大的潜力。我们研究了深度卷积神经网络(DCNN)识别监控摄像机图像中我们的时空数据的性能。我们研究了图像数据集的大小如何影响DCNN基础模型。我们将时空数据提取到7个不同间隔的秋葵植被数据集中,并将其应用于两个著名的卷积网络;AlexNet和GoogLeNet。我们在卷积网络上对时空数据集进行了实验,并在不同的时代对它们进行了比较。1分钟,15分钟和30分钟的周期时空数据集可以实现AlexNet和GoogLeNet的准确率高于99%的优秀深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信