External Magnetic Interference Classification in Magnetostrictive Position Sensors using Neuro-Symbolic AI with Log-Likelihood Ratios

Aimal Khan, T. König, Florian Liebgott, Thomas Greiner
{"title":"External Magnetic Interference Classification in Magnetostrictive Position Sensors using Neuro-Symbolic AI with Log-Likelihood Ratios","authors":"Aimal Khan, T. König, Florian Liebgott, Thomas Greiner","doi":"10.1109/INDIN51400.2023.10217878","DOIUrl":null,"url":null,"abstract":"Magnetostrictive Position Sensors (MPS) are used for precise distance and velocity measurements. They utilize magnetostriction to generate structure-borne sound waves and work on the basis of Time-of-Flight (ToF) calculations. However, external electromagnetic interference (EMI) can impact the accuracy of these sensors by interacting with the magnetic fields of magnetostriction. To address this issue, a novel hybrid approach utilizing both neural and symbolic AI has been developed to classify the intensity of EMI. This system is based on the combination of Log-Likelihood Ratios (LLRs). This study’s findings are particularly significant for industrial environments with numerous sources of external electromagnetic interference, where precise measurement is critical.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10217878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetostrictive Position Sensors (MPS) are used for precise distance and velocity measurements. They utilize magnetostriction to generate structure-borne sound waves and work on the basis of Time-of-Flight (ToF) calculations. However, external electromagnetic interference (EMI) can impact the accuracy of these sensors by interacting with the magnetic fields of magnetostriction. To address this issue, a novel hybrid approach utilizing both neural and symbolic AI has been developed to classify the intensity of EMI. This system is based on the combination of Log-Likelihood Ratios (LLRs). This study’s findings are particularly significant for industrial environments with numerous sources of external electromagnetic interference, where precise measurement is critical.
基于对数似然比神经符号人工智能的磁致伸缩位置传感器外磁干扰分类
磁致伸缩位置传感器(MPS)用于精确的距离和速度测量。他们利用磁致伸缩来产生结构传播的声波,并在飞行时间(ToF)计算的基础上工作。然而,外部电磁干扰(EMI)会通过与磁致伸缩磁场的相互作用影响这些传感器的精度。为了解决这个问题,开发了一种利用神经和符号人工智能的新型混合方法来对电磁干扰强度进行分类。该系统基于对数似然比(LLRs)的组合。这项研究的发现对于具有众多外部电磁干扰源的工业环境尤其重要,在这些环境中,精确测量至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信