{"title":"Sample-Based Optimal Pricing","authors":"Amine Allouah, Omar Besbes","doi":"10.2139/ssrn.3334650","DOIUrl":null,"url":null,"abstract":"Pricing is central to many industries and academic disciplines ranging from Operations Research to Computer Science and Economics. In the present paper, we study data-driven optimal pricing in low informational environments. We analyze the following fundamental problem: how should a decision-maker optimally price based on a single sample of the willingness-to-pay (WTP) of customers. The decision-maker's objective is to select a general pricing policy with maximum competitive ratio when the WTP distribution is only known to belong to some broad set. We characterize optimal performance across a spectrum of non-parametric families of distributions, α-strongly regular distributions, two notable special cases being regular and monotone hazard rate distributions. We develop a general approach to obtain structural lower and upper bounds on the maximin ratio characterized by appropriate dynamic programming value functions. In turn, we develop a tractable procedure to evaluate these bounds. The bounds allow to characterize the maximin ratio up to 1.3% across a spectrum of values of α.","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"VIII 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3334650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Pricing is central to many industries and academic disciplines ranging from Operations Research to Computer Science and Economics. In the present paper, we study data-driven optimal pricing in low informational environments. We analyze the following fundamental problem: how should a decision-maker optimally price based on a single sample of the willingness-to-pay (WTP) of customers. The decision-maker's objective is to select a general pricing policy with maximum competitive ratio when the WTP distribution is only known to belong to some broad set. We characterize optimal performance across a spectrum of non-parametric families of distributions, α-strongly regular distributions, two notable special cases being regular and monotone hazard rate distributions. We develop a general approach to obtain structural lower and upper bounds on the maximin ratio characterized by appropriate dynamic programming value functions. In turn, we develop a tractable procedure to evaluate these bounds. The bounds allow to characterize the maximin ratio up to 1.3% across a spectrum of values of α.