A framework of fuzzy partition based on Artificial Bee Colony for categorical data clustering

I. R. Yanto, Younes Saadi, D. Hartama, Dewi Pramudi Ismi, A. Pranolo
{"title":"A framework of fuzzy partition based on Artificial Bee Colony for categorical data clustering","authors":"I. R. Yanto, Younes Saadi, D. Hartama, Dewi Pramudi Ismi, A. Pranolo","doi":"10.1109/ICSITECH.2016.7852644","DOIUrl":null,"url":null,"abstract":"Fuzzy k-partition (FkP) is an effective clustering technique, which is mathematical model based. Thus, the objective function of FkP is a nonlinear function. Membership random selection is featured by an iterative process, which results in local optima traps easily. It is important to find global optimal consider to nonlinear objective function of the problem. Moreover, Artificial Bee colony (ABC) has ability and efficiently used for multivariable, multinomial function optimization. To this, this paper proposes the hybridization of FkP based on Artificial Bee colony (ABC) a population based algorithm. Some of benchmarks data sets have been elaborated to test the proposed approach. The experiment shows that FkP ABC obtains better results in term of the dun index validity clustering as compared to the baseline algorithm.","PeriodicalId":447090,"journal":{"name":"2016 2nd International Conference on Science in Information Technology (ICSITech)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2016.7852644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fuzzy k-partition (FkP) is an effective clustering technique, which is mathematical model based. Thus, the objective function of FkP is a nonlinear function. Membership random selection is featured by an iterative process, which results in local optima traps easily. It is important to find global optimal consider to nonlinear objective function of the problem. Moreover, Artificial Bee colony (ABC) has ability and efficiently used for multivariable, multinomial function optimization. To this, this paper proposes the hybridization of FkP based on Artificial Bee colony (ABC) a population based algorithm. Some of benchmarks data sets have been elaborated to test the proposed approach. The experiment shows that FkP ABC obtains better results in term of the dun index validity clustering as compared to the baseline algorithm.
基于人工蜂群的模糊划分框架用于分类数据聚类
模糊k划分(FkP)是一种基于数学模型的有效聚类技术。因此,FkP的目标函数是一个非线性函数。隶属度随机选择的特点是一个迭代过程,容易产生局部最优陷阱。考虑问题的非线性目标函数,寻找全局最优是重要的。此外,人工蜂群算法具有求解多变量、多项函数优化的能力和效率。为此,本文提出了基于人工蜂群(ABC)的FkP杂交算法。已经详细阐述了一些基准数据集来测试所提出的方法。实验表明,与基线算法相比,FkP ABC算法在多指标有效性聚类方面取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信