Biases in Data-Driven Networking, and What to Do About Them

Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakrishnan, V. Sekar, B. Sinopoli
{"title":"Biases in Data-Driven Networking, and What to Do About Them","authors":"Mihovil Bartulovic, Junchen Jiang, Sivaraman Balakrishnan, V. Sekar, B. Sinopoli","doi":"10.1145/3152434.3152448","DOIUrl":null,"url":null,"abstract":"Recent efforts highlight the promise of data-driven approaches to optimize network decisions. Many such efforts use trace-driven evaluation; i.e., running offline analysis on network traces to estimate the potential benefits of different policies before running them in practice. Unfortunately, such frameworks can have fundamental pitfalls (e.g., skews due to previous policies that were used in the data collection phase and insufficient data for specific subpopulations) that could lead to misleading estimates and ultimately suboptimal decisions. In this paper, we shed light on such pitfalls and identify a promising roadmap to address these pitfalls by leveraging parallels in causal inference, namely the Doubly Robust estimator.","PeriodicalId":120886,"journal":{"name":"Proceedings of the 16th ACM Workshop on Hot Topics in Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152434.3152448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Recent efforts highlight the promise of data-driven approaches to optimize network decisions. Many such efforts use trace-driven evaluation; i.e., running offline analysis on network traces to estimate the potential benefits of different policies before running them in practice. Unfortunately, such frameworks can have fundamental pitfalls (e.g., skews due to previous policies that were used in the data collection phase and insufficient data for specific subpopulations) that could lead to misleading estimates and ultimately suboptimal decisions. In this paper, we shed light on such pitfalls and identify a promising roadmap to address these pitfalls by leveraging parallels in causal inference, namely the Doubly Robust estimator.
数据驱动网络中的偏见,以及如何解决它们
最近的努力突出了数据驱动方法优化网络决策的前景。许多这样的工作使用跟踪驱动的评估;即,在实际运行不同策略之前,对网络轨迹进行离线分析,以估计不同策略的潜在收益。不幸的是,这种框架可能存在根本性的缺陷(例如,由于以前在数据收集阶段使用的政策和特定亚群体的数据不足而产生的偏差),这可能导致误导性估计并最终导致次优决策。在本文中,我们阐明了这样的陷阱,并确定了一个有前途的路线图,通过利用因果推理中的相似之处来解决这些陷阱,即双重鲁棒估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信