Strong recursive feasibility in model predictive control of biped walking

M. Ciocca, Pierre-Brice Wieber, Thierry Fraichard
{"title":"Strong recursive feasibility in model predictive control of biped walking","authors":"M. Ciocca, Pierre-Brice Wieber, Thierry Fraichard","doi":"10.1109/HUMANOIDS.2017.8246953","DOIUrl":null,"url":null,"abstract":"Realizing a stable walking motion requires satisfying a set of constraints. Model Predictive Control (MPC) is one of few suitable methods to handle such constraints. The capacity to satisfy constraints, which is usually called feasibility, is classically guaranteed recursively. In our applications, an important aspect is that the MPC scheme has to adapt continuously to the dynamic environment of the robot (e.g. collision avoidance, physical interaction). We aim therefore at guaranteeing recursive feasibility for all possible scenarios, which is called strong recursive feasibility. Recursive feasibility is classically obtained by introducing a terminal constraint at the end of the prediction horizon. Between two standard approaches for legged robot, in our applications we favor a capturable terminal constraint. When the robot is not really planning to stop and considers actually making a new step, recursive feasibility is not guaranteed anymore. We demonstrate numerically that recursive feasibility is actually guaranteed, even when a new step is added in the prediction horizon.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Realizing a stable walking motion requires satisfying a set of constraints. Model Predictive Control (MPC) is one of few suitable methods to handle such constraints. The capacity to satisfy constraints, which is usually called feasibility, is classically guaranteed recursively. In our applications, an important aspect is that the MPC scheme has to adapt continuously to the dynamic environment of the robot (e.g. collision avoidance, physical interaction). We aim therefore at guaranteeing recursive feasibility for all possible scenarios, which is called strong recursive feasibility. Recursive feasibility is classically obtained by introducing a terminal constraint at the end of the prediction horizon. Between two standard approaches for legged robot, in our applications we favor a capturable terminal constraint. When the robot is not really planning to stop and considers actually making a new step, recursive feasibility is not guaranteed anymore. We demonstrate numerically that recursive feasibility is actually guaranteed, even when a new step is added in the prediction horizon.
两足行走模型预测控制的强递归可行性
实现稳定的步行运动需要满足一组约束条件。模型预测控制(MPC)是为数不多的适合处理这种约束的方法之一。满足约束的能力(通常称为可行性)通常是递归保证的。在我们的应用中,一个重要的方面是MPC方案必须不断适应机器人的动态环境(例如,避免碰撞,物理交互)。因此,我们的目标是保证所有可能场景的递归可行性,这被称为强递归可行性。经典的递归可行性是通过在预测界的末端引入终端约束来获得的。在有腿机器人的两种标准方法之间,在我们的应用程序中,我们倾向于可捕获的终端约束。当机器人不打算真正停止并考虑实际采取新的步骤时,递归可行性不再得到保证。我们用数值方法证明,即使在预测范围内增加一个新的步骤,递归的可行性实际上是有保证的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信