Application of Sparse auto-encoder in Handwritten Digit Recognition

Kaihong Zhou, Xinxin Qiao, Jingkai Shi
{"title":"Application of Sparse auto-encoder in Handwritten Digit Recognition","authors":"Kaihong Zhou, Xinxin Qiao, Jingkai Shi","doi":"10.1145/3305275.3305277","DOIUrl":null,"url":null,"abstract":"Deep learning and non-supervised learning methods have a wide range of applications in image feature extraction. This article uses MATLAB to train a deep neural network to classify handwritten digital pictures. The deep neural network is formed by stacking multiple sparse auto-encoders, training the data in an unsupervised manner, initializing the weights of the network, and then fine-tuning the network with a reciprocal propagation algorithm. Finally, the images is classified using the soft-max classifier. Sparse reduces the number of dimensions effectively, and the back propagation algorithm is optimized on the cost function, leading to the accuracy rate has been greatly improved, and completing the classification of handwritten numbers.","PeriodicalId":370976,"journal":{"name":"Proceedings of the International Symposium on Big Data and Artificial Intelligence","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Big Data and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3305275.3305277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning and non-supervised learning methods have a wide range of applications in image feature extraction. This article uses MATLAB to train a deep neural network to classify handwritten digital pictures. The deep neural network is formed by stacking multiple sparse auto-encoders, training the data in an unsupervised manner, initializing the weights of the network, and then fine-tuning the network with a reciprocal propagation algorithm. Finally, the images is classified using the soft-max classifier. Sparse reduces the number of dimensions effectively, and the back propagation algorithm is optimized on the cost function, leading to the accuracy rate has been greatly improved, and completing the classification of handwritten numbers.
稀疏自编码器在手写数字识别中的应用
深度学习和非监督学习方法在图像特征提取中有着广泛的应用。本文利用MATLAB训练深度神经网络对手写数字图片进行分类。深度神经网络是通过堆叠多个稀疏自编码器,以无监督的方式训练数据,初始化网络的权值,然后使用互反传播算法对网络进行微调而形成的。最后,使用soft-max分类器对图像进行分类。稀疏有效地减少了维数,并对代价函数进行了反向传播算法的优化,使得准确率有了很大的提高,完成了手写体数字的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信