M. Franco, Erion Sula, Alberto Huertas Celdrán, E. Scheid, L. Granville, B. Stiller
{"title":"SecRiskAI: a Machine Learning-Based Approach for Cybersecurity Risk Prediction in Businesses","authors":"M. Franco, Erion Sula, Alberto Huertas Celdrán, E. Scheid, L. Granville, B. Stiller","doi":"10.1109/CBI54897.2022.00008","DOIUrl":null,"url":null,"abstract":"Cyberattacks have increased in number and severity, negatively impacting businesses and their services. As such, cybersecurity can no longer be seen just as a technological issue, but it must also be recognized as critical to the economy and society. Current solutions struggle to find indicators of unpredictable risks, limiting their ability to perform accurate risk assessments. This work thus introduces SecRiskAI, an approach that employs Machine Learning (ML) to assess and predict how exposed a business is to cybersecurity risks. For this purpose, four ML algorithms were implemented, trained, and evaluated using synthetic datasets representing characteristics of different sizes of businesses (e.g., number of employees, business sector, and known vulnerabilities). Moreover, a Web-based user interface is provided to simplify the risk prediction workflow. The quantitative evaluation performed on SecRiskAI shows a minimal performance overhead and the high accuracy of the ML models, while a case study assesses the feasibility of the overall process for decision-makers.","PeriodicalId":447040,"journal":{"name":"2022 IEEE 24th Conference on Business Informatics (CBI)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 24th Conference on Business Informatics (CBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBI54897.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Cyberattacks have increased in number and severity, negatively impacting businesses and their services. As such, cybersecurity can no longer be seen just as a technological issue, but it must also be recognized as critical to the economy and society. Current solutions struggle to find indicators of unpredictable risks, limiting their ability to perform accurate risk assessments. This work thus introduces SecRiskAI, an approach that employs Machine Learning (ML) to assess and predict how exposed a business is to cybersecurity risks. For this purpose, four ML algorithms were implemented, trained, and evaluated using synthetic datasets representing characteristics of different sizes of businesses (e.g., number of employees, business sector, and known vulnerabilities). Moreover, a Web-based user interface is provided to simplify the risk prediction workflow. The quantitative evaluation performed on SecRiskAI shows a minimal performance overhead and the high accuracy of the ML models, while a case study assesses the feasibility of the overall process for decision-makers.