{"title":"Sparse High-Level Attention Networks for Person Re-Identification","authors":"Sheng Xie, Canlong Zhang, Zhixin Li, Zhiwen Wang","doi":"10.1109/ICTAI.2019.00213","DOIUrl":null,"url":null,"abstract":"When extracting convolutional features from person images with low resolution, a large amount of available information will be lost due to the pooling, which will lead to the reduction of the accuracy of person classification models. This paper proposes a new classification model, which can effectively to reduce the loss of important information about the convolutional neural works. Firstly, the SE module in the Squeeze-and-Excitation Networks (SENet) is extracted and normalized to generate the Normalized Squeeze-and-Excitation (NSE) module. Then, 4 NSE modules are applied to the convolutional layers of ResNet. Finally, a Sparse Normalized Squeeze-and-Excitation Network (SNSENet) is constructed by adding 4 shortcut connections between the convolutional layers. The experimental results of Market-1501 show that the rank-1 of SNSE-ResNet-50 is 3.7% and 4.2% higher than that of SE-ResNet-50 and ResNet-50 respectively, it has done well in other person re-identification datasets.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
When extracting convolutional features from person images with low resolution, a large amount of available information will be lost due to the pooling, which will lead to the reduction of the accuracy of person classification models. This paper proposes a new classification model, which can effectively to reduce the loss of important information about the convolutional neural works. Firstly, the SE module in the Squeeze-and-Excitation Networks (SENet) is extracted and normalized to generate the Normalized Squeeze-and-Excitation (NSE) module. Then, 4 NSE modules are applied to the convolutional layers of ResNet. Finally, a Sparse Normalized Squeeze-and-Excitation Network (SNSENet) is constructed by adding 4 shortcut connections between the convolutional layers. The experimental results of Market-1501 show that the rank-1 of SNSE-ResNet-50 is 3.7% and 4.2% higher than that of SE-ResNet-50 and ResNet-50 respectively, it has done well in other person re-identification datasets.