HCHIRSIMEX: An extended method for domain ontology learning based on conditional mutual information

O. Idrissi, B. Frikh, B. Ouhbi
{"title":"HCHIRSIMEX: An extended method for domain ontology learning based on conditional mutual information","authors":"O. Idrissi, B. Frikh, B. Ouhbi","doi":"10.1109/CIST.2014.7016600","DOIUrl":null,"url":null,"abstract":"This paper presents HCHIRSIMEX, an extended version of our previous algorithm HCHIRSIM for building domain ontology from web corpus. The new version introduces a novel measure based on the Conditional Mutual Information (CMI) statistic method to define the taxonomic relations and the similarity between selected concepts. By using this method, the ontology extracted by HCHIRSIMEX is more concise and contains a richer concept knowledge base compared with the previous version HCHIRSIM. To evaluate our new algorithm effectiveness, we apply the two algorithms and Sanchez et al. algorithm in Finance domain ontology constructed from the web. Then, we compare the obtained concepts with those on the “Financial glossary” provided by Yahoo.com.","PeriodicalId":106483,"journal":{"name":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Third IEEE International Colloquium in Information Science and Technology (CIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2014.7016600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents HCHIRSIMEX, an extended version of our previous algorithm HCHIRSIM for building domain ontology from web corpus. The new version introduces a novel measure based on the Conditional Mutual Information (CMI) statistic method to define the taxonomic relations and the similarity between selected concepts. By using this method, the ontology extracted by HCHIRSIMEX is more concise and contains a richer concept knowledge base compared with the previous version HCHIRSIM. To evaluate our new algorithm effectiveness, we apply the two algorithms and Sanchez et al. algorithm in Finance domain ontology constructed from the web. Then, we compare the obtained concepts with those on the “Financial glossary” provided by Yahoo.com.
HCHIRSIMEX:基于条件互信息的领域本体学习扩展方法
本文提出了HCHIRSIMEX算法,这是我们之前的算法HCHIRSIM的扩展版本,用于从web语料库中构建领域本体。新版本引入了一种基于条件互信息(CMI)统计方法的新度量来定义所选概念之间的分类关系和相似性。采用该方法,HCHIRSIMEX所提取的本体比之前版本的HCHIRSIM更简洁,包含更丰富的概念知识库。为了评估新算法的有效性,我们将这两种算法和Sanchez等人的算法应用于基于web构建的金融领域本体。然后,我们将获得的概念与雅虎网站提供的“财务词汇表”上的概念进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信