Deep Reinforcement Learning based Dynamic Object Detection and Tracking from a Moving Platform

Chinmay Shinde, Rolif Lima, K. Das
{"title":"Deep Reinforcement Learning based Dynamic Object Detection and Tracking from a Moving Platform","authors":"Chinmay Shinde, Rolif Lima, K. Das","doi":"10.1109/ICC47138.2019.9123158","DOIUrl":null,"url":null,"abstract":"This article proposes Deep Reinforcement learning inspired image based visual servoing (DRL-IBVS) controller for aerial robots. The proposed DRL-IBVS controller uses monocular images to map target’s bounding box based errors to linear-velocity command to the robot for following the target. Deep learning based object detection algorithm YOLOv2 architecture is used to identify the target in the image. The noise in detection is filtered using multi-object Bayes filter, where the prediction model utilizes a correlation tracker for target prior estimation. Filtered bounding box output is fed to the Deep Deterministic Policy Gradient (DDPG) for performing the visual servoing. DDPG agent is trained separately using the pinhole camera model and the kinematic relation between two drones (follower and target). Gazebo-based simulation environment is used to successfully validate the controller.","PeriodicalId":231050,"journal":{"name":"2019 Sixth Indian Control Conference (ICC)","volume":"377 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sixth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC47138.2019.9123158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes Deep Reinforcement learning inspired image based visual servoing (DRL-IBVS) controller for aerial robots. The proposed DRL-IBVS controller uses monocular images to map target’s bounding box based errors to linear-velocity command to the robot for following the target. Deep learning based object detection algorithm YOLOv2 architecture is used to identify the target in the image. The noise in detection is filtered using multi-object Bayes filter, where the prediction model utilizes a correlation tracker for target prior estimation. Filtered bounding box output is fed to the Deep Deterministic Policy Gradient (DDPG) for performing the visual servoing. DDPG agent is trained separately using the pinhole camera model and the kinematic relation between two drones (follower and target). Gazebo-based simulation environment is used to successfully validate the controller.
基于深度强化学习的移动平台动态目标检测与跟踪
本文提出了一种基于深度强化学习的基于图像的空中机器人视觉伺服控制器。所提出的DRL-IBVS控制器利用单目图像将目标的边界框误差映射到机器人的线速度指令,使机器人跟踪目标。采用基于深度学习的YOLOv2架构的目标检测算法对图像中的目标进行识别。检测中的噪声采用多目标贝叶斯滤波器进行滤波,其中预测模型利用相关跟踪器进行目标先验估计。过滤后的边界框输出被馈送到深度确定性策略梯度(DDPG)执行视觉伺服。利用针孔摄像机模型和两架无人机(跟随机和目标机)的运动关系分别训练DDPG agent。利用基于gazebo的仿真环境对控制器进行了成功的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信