Gianluca Tabella, D. Ciuonzo, N. Paltrinieri, P. Rossi
{"title":"Spatio-Temporal Decision Fusion for Quickest Fault Detection Within Industrial Plants: The Oil and Gas Scenario","authors":"Gianluca Tabella, D. Ciuonzo, N. Paltrinieri, P. Rossi","doi":"10.23919/fusion49465.2021.9626941","DOIUrl":null,"url":null,"abstract":"In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, we present a spatio-temporal decision fusion approach aimed at performing quickest detection of faults within an Oil and Gas subsea production system. Specifically, a sensor network collectively monitors the state of different pieces of equipment and reports the collected decisions to a fusion center. Therein, a spatial aggregation is performed and a global decision is taken. Such decisions are then aggregated in time by a post-processing center, which performs quickest detection of system fault according to a Bayesian criterion which exploits change-time statistical distributions originated by system components’ datasheets. The performance of our approach is analyzed in terms of both detection- and reliability-focused metrics, with a focus on (fast & inspection-cost-limited) leak detection in a real-world oil platform located in the Barents Sea.