A Shadow Detection Method Based on SLICO Superpixel Segmentation

Kun-Peng Lei, Xin-xi Feng, Yu Wang
{"title":"A Shadow Detection Method Based on SLICO Superpixel Segmentation","authors":"Kun-Peng Lei, Xin-xi Feng, Yu Wang","doi":"10.1109/ISCTIS51085.2021.00067","DOIUrl":null,"url":null,"abstract":"This paper proposes a shadow detection algorithm based on SLICO superpixel segmentation to address the issues of single-image shadow detection. Firstly, SLICO superpixels is used to segment the shadow image to generate superpixel blocks to detect the shadow contour. Then proposes a fusion-characteristics-based SVM classifiers, the superpixel blocks are classified and merged to detect the shadow areas. Finally, the proposed algorithm is compared with Otsu threshold method and traditional SVM detection method. The experiment results verified the effectiveness of the proposed algorithm. The detection performances comparison of SSIM and PSNR indicates that the proposed algorithm obtains relative higher performances than the reference algorithms.","PeriodicalId":403102,"journal":{"name":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS51085.2021.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a shadow detection algorithm based on SLICO superpixel segmentation to address the issues of single-image shadow detection. Firstly, SLICO superpixels is used to segment the shadow image to generate superpixel blocks to detect the shadow contour. Then proposes a fusion-characteristics-based SVM classifiers, the superpixel blocks are classified and merged to detect the shadow areas. Finally, the proposed algorithm is compared with Otsu threshold method and traditional SVM detection method. The experiment results verified the effectiveness of the proposed algorithm. The detection performances comparison of SSIM and PSNR indicates that the proposed algorithm obtains relative higher performances than the reference algorithms.
基于SLICO超像素分割的阴影检测方法
针对单幅图像的阴影检测问题,提出了一种基于SLICO超像素分割的阴影检测算法。首先,利用SLICO超像素对阴影图像进行分割,生成超像素块,检测阴影轮廓;然后提出一种基于融合特征的SVM分类器,对超像素块进行分类合并,检测阴影区域;最后,将该算法与Otsu阈值法和传统的SVM检测方法进行了比较。实验结果验证了该算法的有效性。对SSIM和PSNR的检测性能进行了比较,结果表明该算法比参考算法具有更高的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信