Yu Hou, Zuobin Wang, Jiaojiao Song, Dayou Li, Y. Yue, C. Maple
{"title":"Magnetic surface patterns made by non-destructive laser interference","authors":"Yu Hou, Zuobin Wang, Jiaojiao Song, Dayou Li, Y. Yue, C. Maple","doi":"10.1109/3M-NANO.2013.6737382","DOIUrl":null,"url":null,"abstract":"This paper presents a method to make magnetic surface patterns by non-destructive laser interference, and periodic magnetic fringes produced on magnetic material surfaces are investigated by magnetic force microscopy (MFM). Various thermal effects are obtained by two beam laser interference with different exposure times and pulse energies. The experimental results have shown that magnetic patterns can be made on magnetic materials by laser interference without any damage to the surfaces. The method provides a way for the rapid producing of magnetic marks or recording magnetic data in a large area on a magnetic material surface, and it could be useful for biological, material, optical, electronic and information engineering applications.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a method to make magnetic surface patterns by non-destructive laser interference, and periodic magnetic fringes produced on magnetic material surfaces are investigated by magnetic force microscopy (MFM). Various thermal effects are obtained by two beam laser interference with different exposure times and pulse energies. The experimental results have shown that magnetic patterns can be made on magnetic materials by laser interference without any damage to the surfaces. The method provides a way for the rapid producing of magnetic marks or recording magnetic data in a large area on a magnetic material surface, and it could be useful for biological, material, optical, electronic and information engineering applications.