Enhancing Recall Using Data Cleaning for Biomedical Big Data

P. Deshpande, A. Rasin, Roselyne B. Tchoua, J. Furst, D. Raicu, Sameer Kiran Antani
{"title":"Enhancing Recall Using Data Cleaning for Biomedical Big Data","authors":"P. Deshpande, A. Rasin, Roselyne B. Tchoua, J. Furst, D. Raicu, Sameer Kiran Antani","doi":"10.1109/CBMS49503.2020.00057","DOIUrl":null,"url":null,"abstract":"In clinical practice, large amounts of heterogeneous medical data are generated on a daily basis. This data has the potential to be used for biomedical research and as a diagnostic reference for physicians. However, leveraging heterogeneous data for analysis requires integrating it first. Integration process includes a pre-processing data cleaning phase that eliminates inconsistencies and errors originating from each data source. In this paper, we describe a workflow for cleaning heterogeneous biomedical data sources. Our novel data cleaning approach can be applied for replacement of missing text and to improve the number of relevant cases retrieved by search queries. When the threshold for missing category replacement is met, our results show that our method achieves a missing content replacement precision of 85%, which represents an improvement of 18% over the baseline state of our datasets.","PeriodicalId":121059,"journal":{"name":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS49503.2020.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In clinical practice, large amounts of heterogeneous medical data are generated on a daily basis. This data has the potential to be used for biomedical research and as a diagnostic reference for physicians. However, leveraging heterogeneous data for analysis requires integrating it first. Integration process includes a pre-processing data cleaning phase that eliminates inconsistencies and errors originating from each data source. In this paper, we describe a workflow for cleaning heterogeneous biomedical data sources. Our novel data cleaning approach can be applied for replacement of missing text and to improve the number of relevant cases retrieved by search queries. When the threshold for missing category replacement is met, our results show that our method achieves a missing content replacement precision of 85%, which represents an improvement of 18% over the baseline state of our datasets.
生物医学大数据数据清洗提高召回率
在临床实践中,每天都会产生大量异构的医疗数据。这些数据有可能用于生物医学研究,并作为医生的诊断参考。然而,利用异构数据进行分析需要首先对其进行集成。集成过程包括预处理数据清理阶段,该阶段消除源自每个数据源的不一致和错误。在本文中,我们描述了一个清理异构生物医学数据源的工作流程。我们的新数据清理方法可以用于替换缺失的文本,并提高搜索查询检索到的相关案例的数量。当满足缺失类别替换的阈值时,我们的结果表明,我们的方法实现了85%的缺失内容替换精度,这比我们数据集的基线状态提高了18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信