QM/MM Methods for Crystalline Defects. Part 3: Machine-Learned MM Models

Huajie Chen, C. Ortner, Yangshuai Wang
{"title":"QM/MM Methods for Crystalline Defects. Part 3: Machine-Learned MM Models","authors":"Huajie Chen, C. Ortner, Yangshuai Wang","doi":"10.1137/21m1441122","DOIUrl":null,"url":null,"abstract":"We develop and analyze a framework for consistent QM/MM (quantum/classic) hybrid models of crystalline defects, which admits general atomistic interactions including traditional off-the-shell interatomic potentials as well as state of art “machine-learned interatomic potentials”. We (i) establish an a priori error estimate for the QM/MM approximations in terms of matching conditions between the MM and QM models, and (ii) demonstrate how to use these matching conditions to construct pracical machine learned MM potentials specifically for QM/MM simulations.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1441122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We develop and analyze a framework for consistent QM/MM (quantum/classic) hybrid models of crystalline defects, which admits general atomistic interactions including traditional off-the-shell interatomic potentials as well as state of art “machine-learned interatomic potentials”. We (i) establish an a priori error estimate for the QM/MM approximations in terms of matching conditions between the MM and QM models, and (ii) demonstrate how to use these matching conditions to construct pracical machine learned MM potentials specifically for QM/MM simulations.
晶体缺陷的QM/MM方法。第3部分:机器学习MM模型
我们开发并分析了晶体缺陷的一致QM/MM(量子/经典)混合模型的框架,该模型承认一般的原子相互作用,包括传统的脱壳原子相互作用势以及最先进的“机器学习原子相互作用势”。我们(i)根据MM和QM模型之间的匹配条件建立了QM/MM近似的先验误差估计,并且(ii)演示了如何使用这些匹配条件构建专门用于QM/MM模拟的实际机器学习MM势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信