The application of compressed sensing in wireless sensor network

Peng Zhang, Cheng Chen, Minrun Liu
{"title":"The application of compressed sensing in wireless sensor network","authors":"Peng Zhang, Cheng Chen, Minrun Liu","doi":"10.1109/WCSP.2009.5371386","DOIUrl":null,"url":null,"abstract":"This paper firstly introduces the compressed sensing theory that is very hot in recent research. Our research combines the compressed sensing with wireless sensor network to improve the prior classical formulas due to the great advantage of capabilities of compressing data in large scale wireless network. When the transmission data decrease sharply, the throughput increases obviously in our research models. The traditional analysis of capacity can be revised to the order of Θ(√nW ÷ M √log n) in our network mechanism. Meanwhile the ideal lower bound is approximate to Θ(W÷M). The two results bound the capacity in wireless sensor network with the help of compressed sensing theory. At last, we analyze the delay in this system. Queuing theory facilitates our analysis, thus the result 1 ÷ µ − λ can help us for the further future work.","PeriodicalId":244652,"journal":{"name":"2009 International Conference on Wireless Communications & Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2009.5371386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper firstly introduces the compressed sensing theory that is very hot in recent research. Our research combines the compressed sensing with wireless sensor network to improve the prior classical formulas due to the great advantage of capabilities of compressing data in large scale wireless network. When the transmission data decrease sharply, the throughput increases obviously in our research models. The traditional analysis of capacity can be revised to the order of Θ(√nW ÷ M √log n) in our network mechanism. Meanwhile the ideal lower bound is approximate to Θ(W÷M). The two results bound the capacity in wireless sensor network with the help of compressed sensing theory. At last, we analyze the delay in this system. Queuing theory facilitates our analysis, thus the result 1 ÷ µ − λ can help us for the further future work.
压缩感知技术在无线传感器网络中的应用
本文首先介绍了近年来研究的热点压缩感知理论。由于在大规模无线网络中压缩数据的能力具有很大的优势,我们的研究将压缩感知与无线传感器网络相结合,改进了先前的经典公式。在我们的研究模型中,当传输数据急剧减少时,吞吐量明显增加。在我们的网络机制中,传统的容量分析可以修正为Θ(√nW ÷ M√log n)的量级。同时,理想下界近似于Θ(W÷M)。这两个结果利用压缩感知理论对无线传感器网络的容量进行了限定。最后,对系统的时延进行了分析。排队理论有助于我们的分析,因此结果1 ÷µ−λ可以帮助我们进一步的未来工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信