A Supervised Hybrid Algorithm based DSTATCOM to Cater to Dynamic Load Changes

Epsita Das, Aakash Bhattacharjee, Sukalyan Roy, Biswarup Ganguly, A. Banerji, S. Biswas
{"title":"A Supervised Hybrid Algorithm based DSTATCOM to Cater to Dynamic Load Changes","authors":"Epsita Das, Aakash Bhattacharjee, Sukalyan Roy, Biswarup Ganguly, A. Banerji, S. Biswas","doi":"10.1109/UEMGREEN46813.2019.9221544","DOIUrl":null,"url":null,"abstract":"Renewable energies like Photo Voltaic (PV)/ solar power are abundantly available and waiting to be harnessed. Being weak system renewable energy based power systems require reactive power generation close to load to unburden the source. Study reveals fixed tuned Proportional & Integral (PI) controller based DSTATCOM may not be able to provide satisfactory voltage regulation with wide load changes. DSTATCOM generally requires tuning of PI controllers by utility engineers during installation. This process is mostly trial and error approach. It is necessary to re-tune the DSTATCOM controller when there is change in operating condition. To ensure automatic control action irrespective of load conditions, soft-computing technique is implemented in the DSTATCOM. A supervised hybrid algorithm named Neuro- Fuzzy controller is adopted to ensure automatic adaptation of the controller parameters during changing load conditions. The paper presents a Synchronous Reference Frame theory (SRF) based DSTATCOM on MATLAB platform and uses a Neuro- Fuzzy inference system to get a better response in terms of dynamic voltage profile and Total Harmonic Distortion (THD) as compared to simple PI Controller.","PeriodicalId":199125,"journal":{"name":"2019 International Conference on Energy Management for Green Environment (UEMGREEN)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Energy Management for Green Environment (UEMGREEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMGREEN46813.2019.9221544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Renewable energies like Photo Voltaic (PV)/ solar power are abundantly available and waiting to be harnessed. Being weak system renewable energy based power systems require reactive power generation close to load to unburden the source. Study reveals fixed tuned Proportional & Integral (PI) controller based DSTATCOM may not be able to provide satisfactory voltage regulation with wide load changes. DSTATCOM generally requires tuning of PI controllers by utility engineers during installation. This process is mostly trial and error approach. It is necessary to re-tune the DSTATCOM controller when there is change in operating condition. To ensure automatic control action irrespective of load conditions, soft-computing technique is implemented in the DSTATCOM. A supervised hybrid algorithm named Neuro- Fuzzy controller is adopted to ensure automatic adaptation of the controller parameters during changing load conditions. The paper presents a Synchronous Reference Frame theory (SRF) based DSTATCOM on MATLAB platform and uses a Neuro- Fuzzy inference system to get a better response in terms of dynamic voltage profile and Total Harmonic Distortion (THD) as compared to simple PI Controller.
一种适应动态负载变化的DSTATCOM监督混合算法
像光伏(PV)/太阳能这样的可再生能源是丰富的,等待被利用。作为弱电系统,基于可再生能源的电力系统要求无功发电靠近负荷以减轻源负荷。研究表明,基于DSTATCOM的固定调谐比例积分(PI)控制器可能无法在负载变化较大的情况下提供令人满意的电压调节。DSTATCOM通常需要在安装过程中由公用事业工程师对PI控制器进行调谐。这个过程主要是试错法。当运行工况发生变化时,需要对DSTATCOM控制器进行重新调整。为了保证在不受负载影响的情况下自动控制,DSTATCOM采用了软计算技术。为了保证控制器参数在负载条件变化时的自动自适应,采用了一种有监督的神经模糊混合控制算法。本文在MATLAB平台上提出了一种基于同步参考框架理论(SRF)的DSTATCOM,并采用神经模糊推理系统,与简单的PI控制器相比,在动态电压分布和总谐波失真(THD)方面得到了更好的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信