Watermarking Deep Neural Networks for Embedded Systems

Jiabao Guo, M. Potkonjak
{"title":"Watermarking Deep Neural Networks for Embedded Systems","authors":"Jiabao Guo, M. Potkonjak","doi":"10.1145/3240765.3240862","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have become an important tool for bringing intelligence to mobile and embedded devices. The increasingly wide deployment, sharing and potential commercialization of DNN models create a compelling need for intellectual property (IP) protection. Recently, DNN watermarking emerges as a plausible IP protection method. Enabling DNN watermarking on embedded devices in a practical setting requires a black-box approach. Existing DNN watermarking frameworks either fail to meet the black-box requirement or are susceptible to several forms of attacks. We propose a watermarking framework by incorporating the author's signature in the process of training DNNs. While functioning normally in regular cases, the resulting watermarked DNN behaves in a different, predefined pattern when given any signed inputs, thus proving the authorship. We demonstrate an example implementation of the framework on popular image classification datasets and show that strong watermarks can be embedded in the models.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

Abstract

Deep neural networks (DNNs) have become an important tool for bringing intelligence to mobile and embedded devices. The increasingly wide deployment, sharing and potential commercialization of DNN models create a compelling need for intellectual property (IP) protection. Recently, DNN watermarking emerges as a plausible IP protection method. Enabling DNN watermarking on embedded devices in a practical setting requires a black-box approach. Existing DNN watermarking frameworks either fail to meet the black-box requirement or are susceptible to several forms of attacks. We propose a watermarking framework by incorporating the author's signature in the process of training DNNs. While functioning normally in regular cases, the resulting watermarked DNN behaves in a different, predefined pattern when given any signed inputs, thus proving the authorship. We demonstrate an example implementation of the framework on popular image classification datasets and show that strong watermarks can be embedded in the models.
嵌入式系统的深度神经网络水印
深度神经网络(dnn)已经成为为移动和嵌入式设备带来智能的重要工具。深度神经网络模型的日益广泛的部署、共享和潜在的商业化产生了对知识产权(IP)保护的迫切需求。近年来,深度神经网络水印作为一种可行的知识产权保护方法出现。在实际设置中,在嵌入式设备上启用DNN水印需要一种黑盒方法。现有的深度神经网络水印框架要么不能满足黑盒要求,要么容易受到多种形式的攻击。我们提出了一个在训练dnn过程中加入作者签名的水印框架。虽然在正常情况下正常工作,但当给定任何签名输入时,所得到的带水印的DNN会以不同的预定义模式运行,从而证明作者身份。我们在流行的图像分类数据集上展示了该框架的一个示例实现,并表明该模型可以嵌入强水印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信