Adaptive Duration Modification of Speech using Masked Convolutional Networks and Open-Loop Time Warping

Ravi Shankar, Archana Venkataraman
{"title":"Adaptive Duration Modification of Speech using Masked Convolutional Networks and Open-Loop Time Warping","authors":"Ravi Shankar, Archana Venkataraman","doi":"10.21437/ssw.2023-28","DOIUrl":null,"url":null,"abstract":"We propose a new method to adaptively modify the rhythm of a given speech signal. We train a masked convolutional encoder-decoder network to generate this attention map via a stochastic version of the mean absolute error loss function. Our model also predicts the length of the target speech signal using the encoder embeddings, which determines the number of time steps for the decoding operation. During testing, we use the learned attention map as a proxy for the frame-wise similarity matrix between the given input speech and an unknown target speech signal. In an open-loop fashion, we compute a warping path for rhythm modification. Our experiments demonstrate that this adaptive framework achieves similar performance as the fully supervised dynamic time warping algorithm on both voice conversion and emotion conversion tasks. We also show that the modified speech utterances achieve high user quality ratings, thus highlighting the practical utility of our method.","PeriodicalId":346639,"journal":{"name":"12th ISCA Speech Synthesis Workshop (SSW2023)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th ISCA Speech Synthesis Workshop (SSW2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ssw.2023-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new method to adaptively modify the rhythm of a given speech signal. We train a masked convolutional encoder-decoder network to generate this attention map via a stochastic version of the mean absolute error loss function. Our model also predicts the length of the target speech signal using the encoder embeddings, which determines the number of time steps for the decoding operation. During testing, we use the learned attention map as a proxy for the frame-wise similarity matrix between the given input speech and an unknown target speech signal. In an open-loop fashion, we compute a warping path for rhythm modification. Our experiments demonstrate that this adaptive framework achieves similar performance as the fully supervised dynamic time warping algorithm on both voice conversion and emotion conversion tasks. We also show that the modified speech utterances achieve high user quality ratings, thus highlighting the practical utility of our method.
基于掩模卷积网络和开环时间扭曲的语音持续时间自适应修正
我们提出了一种自适应修改给定语音信号节奏的新方法。我们训练了一个掩蔽卷积编码器-解码器网络,通过随机版本的平均绝对误差损失函数来生成这个注意图。我们的模型还使用编码器嵌入来预测目标语音信号的长度,这决定了解码操作的时间步数。在测试过程中,我们使用学习到的注意图作为给定输入语音和未知目标语音信号之间的帧相似矩阵的代理。在一个开环的方式,我们计算一个扭曲路径的节奏修改。我们的实验表明,该自适应框架在语音转换和情感转换任务上取得了与完全监督动态时间规整算法相似的性能。我们还表明,修改后的语音话语达到了很高的用户质量评级,从而突出了我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信