Parameter Estimation of Silicon Metal Grid using Supervised Learning

Allan Sánchez-Masís, Sameer Shekhar, Christian Chaves Bejarano, Mauricio Aguilar Salas
{"title":"Parameter Estimation of Silicon Metal Grid using Supervised Learning","authors":"Allan Sánchez-Masís, Sameer Shekhar, Christian Chaves Bejarano, Mauricio Aguilar Salas","doi":"10.1109/EMCSI39492.2022.10050255","DOIUrl":null,"url":null,"abstract":"Silicon industry needs reduced design time to cater to broad annual product portfolio. Therefore, avoiding complex simulations during product design has immense value. To that end this paper presents machine learning based parameter estimation method for silicon metal grid based on past data. Regression results from employed machine learning algorithms and dependency on data standardization is discussed. Over 40% reduction in root mean square error of grid resistance is reported which is crucial for obtaining accurate transient and AC simulation result.","PeriodicalId":250856,"journal":{"name":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI39492.2022.10050255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon industry needs reduced design time to cater to broad annual product portfolio. Therefore, avoiding complex simulations during product design has immense value. To that end this paper presents machine learning based parameter estimation method for silicon metal grid based on past data. Regression results from employed machine learning algorithms and dependency on data standardization is discussed. Over 40% reduction in root mean square error of grid resistance is reported which is crucial for obtaining accurate transient and AC simulation result.
基于监督学习的金属硅网格参数估计
硅工业需要减少设计时间,以满足广泛的年度产品组合。因此,在产品设计过程中避免复杂的模拟具有巨大的价值。为此,本文提出了基于机器学习的金属硅网格参数估计方法。讨论了机器学习算法的回归结果和对数据标准化的依赖。电网电阻均方根误差减小40%以上,这对获得准确的暂态和交流仿真结果至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信