SPARQL Endpoint Metrics for Quality-Aware Linked Data Consumption

Johannes Lorey
{"title":"SPARQL Endpoint Metrics for Quality-Aware Linked Data Consumption","authors":"Johannes Lorey","doi":"10.1145/2539150.2539240","DOIUrl":null,"url":null,"abstract":"In recent years, dozens of publicly accessible Linked Data repositories containing vast amounts of knowledge presented in the Resource Description Framework (RDF) format have been set up worldwide. By utilizing the SPARQL query language, users can consume, integrate, and present data from a federation of sources for different application scenarios. However, several challenges arise for distributed query processing across multiple SPARQL endpoints, such as devising suitable query optimization or result caching strategies.\n For implementing these techniques, one crucial aspect lies in determining appropriate endpoint features. In this work, we introduce several metrics that enable universal and finegrained characterization of arbitrary Linked Data repositories. We present comprehensive approaches for deriving these metrics and validate them through extensive evaluation on real-world SPARQL endpoints. Finally, we discuss possible implications of our findings for data consumers.","PeriodicalId":424918,"journal":{"name":"International Conference on Information Integration and Web-based Applications & Services","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2539150.2539240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, dozens of publicly accessible Linked Data repositories containing vast amounts of knowledge presented in the Resource Description Framework (RDF) format have been set up worldwide. By utilizing the SPARQL query language, users can consume, integrate, and present data from a federation of sources for different application scenarios. However, several challenges arise for distributed query processing across multiple SPARQL endpoints, such as devising suitable query optimization or result caching strategies. For implementing these techniques, one crucial aspect lies in determining appropriate endpoint features. In this work, we introduce several metrics that enable universal and finegrained characterization of arbitrary Linked Data repositories. We present comprehensive approaches for deriving these metrics and validate them through extensive evaluation on real-world SPARQL endpoints. Finally, we discuss possible implications of our findings for data consumers.
用于质量感知关联数据消费的SPARQL端点度量
近年来,世界各地已经建立了数十个可公开访问的关联数据存储库,其中包含以资源描述框架(RDF)格式表示的大量知识。通过使用SPARQL查询语言,用户可以为不同的应用程序场景使用、集成和呈现来自联合源的数据。然而,对于跨多个SPARQL端点的分布式查询处理,出现了一些挑战,例如设计合适的查询优化或结果缓存策略。要实现这些技术,一个关键方面在于确定适当的端点特性。在这项工作中,我们引入了几个指标,可以对任意关联数据存储库进行通用和细粒度的表征。我们提供了派生这些指标的综合方法,并通过在实际SPARQL端点上进行广泛评估来验证它们。最后,我们讨论了我们的发现对数据消费者可能产生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信