{"title":"Analysis of parameters of trees corresponding to Huffman codes and sums of unit fractions","authors":"C. Heuberger, Daniel Krenn, S. Wagner","doi":"10.1137/1.9781611973037.5","DOIUrl":null,"url":null,"abstract":"For fixed t ≥ 2, we consider the class of representations of 1 as sum of unit fractions whose denominators are powers of t or equivalently the class of canonical compact t-ary Huffman codes or equivalently rooted t-ary plane \"canonical\" trees. \n \nWe study the probabilistic behaviour of the height (limit distribution is shown to be normal), the number of distinct summands (normal distribution), the path length (normal distribution), the width (main term of the expectation and concentration property) and the number of leaves at maximum distance from the root (discrete distribution).","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973037.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
For fixed t ≥ 2, we consider the class of representations of 1 as sum of unit fractions whose denominators are powers of t or equivalently the class of canonical compact t-ary Huffman codes or equivalently rooted t-ary plane "canonical" trees.
We study the probabilistic behaviour of the height (limit distribution is shown to be normal), the number of distinct summands (normal distribution), the path length (normal distribution), the width (main term of the expectation and concentration property) and the number of leaves at maximum distance from the root (discrete distribution).