Modulation Classification of Active Attack Signals for Internet of Things Using GP-CNN Network

Kejia Ji, Shuo Chang, Sai Huang, Hao Chen, Shao Jia, Hua Lu
{"title":"Modulation Classification of Active Attack Signals for Internet of Things Using GP-CNN Network","authors":"Kejia Ji, Shuo Chang, Sai Huang, Hao Chen, Shao Jia, Hua Lu","doi":"10.1109/ICCWorkshops50388.2021.9473800","DOIUrl":null,"url":null,"abstract":"The traditional modulation classification method is difficult to cope with the changing wireless electromagnetic environment and the complex signal model. On this basis, this paper proposes a data-driven automatic modulation classification (AMC) method using a global pooling-based convolutional neural network (GP-CNN). Stepping convolution is used to replace the pooling layer to avoid loss of signal details and global pooling (GP) is utilized to replace the fully-connected for a lower computational complexity. Simulations verify the superiority of the proposed method, which outperforms other deep neural network methods and approaches the optimal bound of the maximum likelihood method. Moreover, the influence of the network parameters on performance is also explored.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"577 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The traditional modulation classification method is difficult to cope with the changing wireless electromagnetic environment and the complex signal model. On this basis, this paper proposes a data-driven automatic modulation classification (AMC) method using a global pooling-based convolutional neural network (GP-CNN). Stepping convolution is used to replace the pooling layer to avoid loss of signal details and global pooling (GP) is utilized to replace the fully-connected for a lower computational complexity. Simulations verify the superiority of the proposed method, which outperforms other deep neural network methods and approaches the optimal bound of the maximum likelihood method. Moreover, the influence of the network parameters on performance is also explored.
基于GP-CNN网络的物联网主动攻击信号调制分类
传统的调制分类方法难以适应不断变化的无线电磁环境和复杂的信号模型。在此基础上,提出了一种基于全局池化的卷积神经网络(GP-CNN)的数据驱动的自动调制分类(AMC)方法。采用步进卷积代替池化层以避免信号细节丢失,采用全局池化代替全连接层以降低计算复杂度。仿真结果验证了该方法的优越性,该方法优于其他深度神经网络方法,并逼近最大似然方法的最优界。此外,还探讨了网络参数对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信