Optimized Methods for Online Monitoring of L-Glutamic Acid Crystallization

Timing Yang, Chen Jiang, Qi Meng
{"title":"Optimized Methods for Online Monitoring of L-Glutamic Acid Crystallization","authors":"Timing Yang, Chen Jiang, Qi Meng","doi":"10.1109/CONF-SPML54095.2021.00027","DOIUrl":null,"url":null,"abstract":"In order to monitor the crystallization process of L-glutamic acid online, a real-time detection method based on non-invasive image analysis has been proposed to obtain in-situ images, and a deep-learning based network Mask R-CNN is applied to detect target crystals in images. Considering deep-learning network requires an enormous amount of dataset with labelled region of interest (RoI) samples, this paper proposes semi-automatic labelling methods to reduce human work when generating the dataset. By applying another Mask R-CNN for labelling the dataset, human work can be reduced from labelling the whole dataset to filtering the detection results of the labeller Mask R-CNN. The final detection results prove the feasibility of this method. The proposed method is also proved to be more feasible and reliable than transfer learning.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to monitor the crystallization process of L-glutamic acid online, a real-time detection method based on non-invasive image analysis has been proposed to obtain in-situ images, and a deep-learning based network Mask R-CNN is applied to detect target crystals in images. Considering deep-learning network requires an enormous amount of dataset with labelled region of interest (RoI) samples, this paper proposes semi-automatic labelling methods to reduce human work when generating the dataset. By applying another Mask R-CNN for labelling the dataset, human work can be reduced from labelling the whole dataset to filtering the detection results of the labeller Mask R-CNN. The final detection results prove the feasibility of this method. The proposed method is also proved to be more feasible and reliable than transfer learning.
l -谷氨酸结晶在线监测方法的优化
为了在线监测l-谷氨酸的结晶过程,提出了一种基于无创图像分析的实时检测方法来获取原位图像,并应用基于深度学习的网络Mask R-CNN对图像中的目标晶体进行检测。考虑到深度学习网络需要大量带有感兴趣区域(RoI)样本标记的数据集,本文提出了半自动标记方法,以减少生成数据集时的人工工作量。通过应用另一个Mask R-CNN对数据集进行标记,可以将人工工作从标记整个数据集减少到过滤标记器Mask R-CNN的检测结果。最后的检测结果证明了该方法的可行性。结果表明,该方法比迁移学习方法更可行、更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信