{"title":"The Cyclogenesis and Decay of Typhoon Damrey","authors":"X. Liang, Lan Wang","doi":"10.5772/INTECHOPEN.80018","DOIUrl":null,"url":null,"abstract":"The cyclogenesis of typhoons has been a continuing challenge in dynamic meteorology. In this study, we use a recently developed methodology, namely, multiscale window transform (MWT), together with the MWT-based localized multiscale energy and vorticity analysis and the theory of canonical transfer, to investigate the formation, maintenance, and decay of the typhoon Damrey, a rarely seen tropical storm of higher-latitude origin. The atmospheric fields are first reconstructed onto three scale subspaces or scale windows: large-scale window, tropical cyclone-scale window, and cumulus convection-scale window. On the cyclone-scale window, Damrey is found right along the edge of the subtropical high. It is generated due to a strong barotropic instability in the lower troposphere, but its subsequent rapid amplification is, however, related to a baroclinic instability in the upper troposphere. Damrey begins to decay before landfall, right over East China Sea at the mouth of Yangtze River, where a strong inverse cascade center resides and transfers the cyclone-scale energy backward to the large-scale window.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The cyclogenesis of typhoons has been a continuing challenge in dynamic meteorology. In this study, we use a recently developed methodology, namely, multiscale window transform (MWT), together with the MWT-based localized multiscale energy and vorticity analysis and the theory of canonical transfer, to investigate the formation, maintenance, and decay of the typhoon Damrey, a rarely seen tropical storm of higher-latitude origin. The atmospheric fields are first reconstructed onto three scale subspaces or scale windows: large-scale window, tropical cyclone-scale window, and cumulus convection-scale window. On the cyclone-scale window, Damrey is found right along the edge of the subtropical high. It is generated due to a strong barotropic instability in the lower troposphere, but its subsequent rapid amplification is, however, related to a baroclinic instability in the upper troposphere. Damrey begins to decay before landfall, right over East China Sea at the mouth of Yangtze River, where a strong inverse cascade center resides and transfers the cyclone-scale energy backward to the large-scale window.