Nonlinear dimensionality reduction for structural discovery in image processing

D. Floyd, R. Cloutier, Teresa Zigh
{"title":"Nonlinear dimensionality reduction for structural discovery in image processing","authors":"D. Floyd, R. Cloutier, Teresa Zigh","doi":"10.1109/AIPR.2013.6749319","DOIUrl":null,"url":null,"abstract":"Nonlinear dimensionality reduction techniques are a thriving area of research in many fields, including pattern recognition, statistical learning, medical imaging, and statistics. This is largely driven by our need to collect, represent, manipulate, and understand high-dimensional data in practically all areas of science. Here we define “high-dimensional” to be where dimension d > 10, and in many applications d ≫ 10. In this paper we discuss several nonlinear dimensionality reduction techniques and compare their characteristics, with a focus on applications to improve tractability and provide low-dimensional structural discovery for image processing.","PeriodicalId":435620,"journal":{"name":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2013.6749319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear dimensionality reduction techniques are a thriving area of research in many fields, including pattern recognition, statistical learning, medical imaging, and statistics. This is largely driven by our need to collect, represent, manipulate, and understand high-dimensional data in practically all areas of science. Here we define “high-dimensional” to be where dimension d > 10, and in many applications d ≫ 10. In this paper we discuss several nonlinear dimensionality reduction techniques and compare their characteristics, with a focus on applications to improve tractability and provide low-dimensional structural discovery for image processing.
图像处理中结构发现的非线性降维方法
非线性降维技术在许多领域都是一个蓬勃发展的研究领域,包括模式识别、统计学习、医学成像和统计学。这在很大程度上是由于我们需要收集、表示、操纵和理解几乎所有科学领域的高维数据。这里我们将“高维”定义为维数d > 10,并且在许多应用中d > 10。本文讨论了几种非线性降维技术,并比较了它们的特点,重点介绍了在提高可追溯性和为图像处理提供低维结构发现方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信