Discovery of Mineralization Predication Classification Rules by Using Gene Expression Programming Based on PCA

Dongmei Zhang, Yue Huang, Jing Zhi
{"title":"Discovery of Mineralization Predication Classification Rules by Using Gene Expression Programming Based on PCA","authors":"Dongmei Zhang, Yue Huang, Jing Zhi","doi":"10.1109/ICNC.2009.367","DOIUrl":null,"url":null,"abstract":"Classification is one of the fundamental tasks in geology field. In this paper, we propose an evolutionary approach for discovering classification rules of mineralization predication from distinct combinations of geochemistry elements by using gene expression programming (GEP). The innovative part of the paper presents integrated/hybrid model-combine GEP evolution modeling with Principal Component Analysis (PCA), which reduce multidimensional data sets. Mineral deposit with tin and copper in Gejiu is chosen as the research area. MAPGIS and MORPAS are used to extract the value of ore-controlled factors by mapping geologic maps into grid cell. Case study illustrates the proposed GEP approach Based on PCA is more efficient and accurate in a large searching space, compared with Decision Tree (C4.5) and Bayesian Networks.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classification is one of the fundamental tasks in geology field. In this paper, we propose an evolutionary approach for discovering classification rules of mineralization predication from distinct combinations of geochemistry elements by using gene expression programming (GEP). The innovative part of the paper presents integrated/hybrid model-combine GEP evolution modeling with Principal Component Analysis (PCA), which reduce multidimensional data sets. Mineral deposit with tin and copper in Gejiu is chosen as the research area. MAPGIS and MORPAS are used to extract the value of ore-controlled factors by mapping geologic maps into grid cell. Case study illustrates the proposed GEP approach Based on PCA is more efficient and accurate in a large searching space, compared with Decision Tree (C4.5) and Bayesian Networks.
基于PCA的基因表达编程的矿化预测分类规则发现
分类是地质领域的基本任务之一。本文提出了一种利用基因表达程序(GEP)从地球化学元素的不同组合中发现成矿预测分类规则的进化方法。本文的创新之处是提出了集成/混合模型——将GEP进化建模与主成分分析(PCA)相结合,减少了多维数据集。选择个旧锡铜矿床作为研究区。利用MAPGIS和MORPAS将地质图填入网格单元,提取控矿因子值。案例研究表明,与决策树(C4.5)和贝叶斯网络相比,基于PCA的GEP方法在大搜索空间内具有更高的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信