Image Generation Method Based on Improved Condition GAN

Qiuzi Jin, Xin Luo, Youqun Shi, K. Kita
{"title":"Image Generation Method Based on Improved Condition GAN","authors":"Qiuzi Jin, Xin Luo, Youqun Shi, K. Kita","doi":"10.1109/ICSAI48974.2019.9010120","DOIUrl":null,"url":null,"abstract":"The Generated Adversarial Network (GAN) is commonly used to learn to generate a wide variety of images. The Wasserstein GAN improves the stability of GAN, but there are also deficiencies that do not have controllable conditions. This paper proposes an improved GAN network model, which we call CWGAN. CWGAN achieves the goal of improving the training stability and controllability of GAN by adding condition information to WGAN generators and discriminators. The experiment results show that CWGAN improves the training stability, solves the problem of gradient disappearance, and produces images more clearly, and there is no obvious mode collapse problem.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The Generated Adversarial Network (GAN) is commonly used to learn to generate a wide variety of images. The Wasserstein GAN improves the stability of GAN, but there are also deficiencies that do not have controllable conditions. This paper proposes an improved GAN network model, which we call CWGAN. CWGAN achieves the goal of improving the training stability and controllability of GAN by adding condition information to WGAN generators and discriminators. The experiment results show that CWGAN improves the training stability, solves the problem of gradient disappearance, and produces images more clearly, and there is no obvious mode collapse problem.
基于改进条件GAN的图像生成方法
生成对抗网络(GAN)通常用于学习生成各种各样的图像。Wasserstein GAN提高了GAN的稳定性,但也存在不具备可控条件的不足。本文提出了一种改进的GAN网络模型,我们称之为CWGAN。CWGAN通过在WGAN发生器和判别器中加入条件信息,达到提高GAN训练稳定性和可控性的目的。实验结果表明,CWGAN提高了训练稳定性,解决了梯度消失问题,生成的图像更加清晰,没有明显的模态崩溃问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信