Local Polynomial Factorisation: Improving the Montes Algorithm

A. Poteaux, Martin Weimann
{"title":"Local Polynomial Factorisation: Improving the Montes Algorithm","authors":"A. Poteaux, Martin Weimann","doi":"10.1145/3476446.3535487","DOIUrl":null,"url":null,"abstract":"We improve significantly the Nart-Montes algorithm for factoring polynomials over a complete discrete valuation ring A. Our first contribution is to extend the Hensel lemma in the context of generalised Newton polygons, from which we derive a new divide and conquer strategy. Also, if A has residual characteristic zero or high enough, we prove that approximate roots are convenient representatives of types, leading finally to an almost optimal complexity both for irreducibility and factorisation issues, plus the cost of factorisations above the residue field. For instance, to compute an OM-factorisation of F∈A[x], we improve the complexity results of [3] by a factor δ, the discriminant valuation of F.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We improve significantly the Nart-Montes algorithm for factoring polynomials over a complete discrete valuation ring A. Our first contribution is to extend the Hensel lemma in the context of generalised Newton polygons, from which we derive a new divide and conquer strategy. Also, if A has residual characteristic zero or high enough, we prove that approximate roots are convenient representatives of types, leading finally to an almost optimal complexity both for irreducibility and factorisation issues, plus the cost of factorisations above the residue field. For instance, to compute an OM-factorisation of F∈A[x], we improve the complexity results of [3] by a factor δ, the discriminant valuation of F.
局部多项式分解:改进Montes算法
我们显著改进了Nart-Montes算法在一个完整的离散估值环a上分解多项式。我们的第一个贡献是在广义牛顿多边形的背景下扩展了Hensel引理,从中我们得出了一个新的分而治之策略。此外,如果A的剩余特征为零或足够高,我们证明近似根是类型的方便代表,最终导致不可约性和分解问题的几乎最优复杂性,加上剩余域以上的分解成本。例如,为了计算F∈A[x]的om因子分解,我们通过因子δ (F的判别值)改进了[3]的复杂性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信