M. Saltzer, B. Kallstrand, K. Johansson, D. Borg, J. Schiessling, C. Doiron
{"title":"DC field measurements around a cable end","authors":"M. Saltzer, B. Kallstrand, K. Johansson, D. Borg, J. Schiessling, C. Doiron","doi":"10.1109/CEIDP.2013.6748310","DOIUrl":null,"url":null,"abstract":"Even under corona-free conditions, insulating structures (materials) may be charged in DC fields. This is due to the fact that air has a finite ionic conductivity. The finite conductivity of air results from charges generated by background radio activity and cosmic radiation. Typical ion concentrations on ground are 107 to 1010 ions/m3 which leads to conductivities ranging from 10-16 to 10-13 S/m. An experiment has been conducted where the end of a terminated high voltage XLPE cable was used as an insulating structure. The field distribution around the stripped cable end was measured with an applied DC voltage of -140 kV using a rotating field probe. The measurements are compared to simulations, which do not specifically take into account space charge effects. A big discrepancy is observed, showing the relevance of taking into account space charge effects when modeling HVDC insulation components subjected to air.","PeriodicalId":393969,"journal":{"name":"2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2013.6748310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Even under corona-free conditions, insulating structures (materials) may be charged in DC fields. This is due to the fact that air has a finite ionic conductivity. The finite conductivity of air results from charges generated by background radio activity and cosmic radiation. Typical ion concentrations on ground are 107 to 1010 ions/m3 which leads to conductivities ranging from 10-16 to 10-13 S/m. An experiment has been conducted where the end of a terminated high voltage XLPE cable was used as an insulating structure. The field distribution around the stripped cable end was measured with an applied DC voltage of -140 kV using a rotating field probe. The measurements are compared to simulations, which do not specifically take into account space charge effects. A big discrepancy is observed, showing the relevance of taking into account space charge effects when modeling HVDC insulation components subjected to air.