Crime prediction and prevention using police patrolling data: challenges and prospects

Thales Vieira, Tiago Paulino, João Matheus Siqueira Souza, Edival Lima
{"title":"Crime prediction and prevention using police patrolling data: challenges and prospects","authors":"Thales Vieira, Tiago Paulino, João Matheus Siqueira Souza, Edival Lima","doi":"10.5753/sibgrapi.est.2022.23285","DOIUrl":null,"url":null,"abstract":"Spatiotemporal crime analysis and prediction aim at identifying criminal patterns in space and time. In previous work, crime prediction has been performed by identifying hotspots from data, which means areas of high criminal activity on the streets. By focusing efforts on such sites, police patrolling is expected to be more efficient, thus reducing criminal activity. However, not many studies focus on investigating how police patrolling affects crime, and whether it can be a predictor of crime activity. In this paper we discuss the main challenges of this problem, and describe some work in progress towards developing a robust methodology to represent, visually analyze, and build predictors for criminal activity, considering both criminal and police patrolling spatiotemporal data. As a case study, we use real datasets from the Military Police of the state of Alagoas, Brazil (PM-AL).","PeriodicalId":182158,"journal":{"name":"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)","volume":"505 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2022.23285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatiotemporal crime analysis and prediction aim at identifying criminal patterns in space and time. In previous work, crime prediction has been performed by identifying hotspots from data, which means areas of high criminal activity on the streets. By focusing efforts on such sites, police patrolling is expected to be more efficient, thus reducing criminal activity. However, not many studies focus on investigating how police patrolling affects crime, and whether it can be a predictor of crime activity. In this paper we discuss the main challenges of this problem, and describe some work in progress towards developing a robust methodology to represent, visually analyze, and build predictors for criminal activity, considering both criminal and police patrolling spatiotemporal data. As a case study, we use real datasets from the Military Police of the state of Alagoas, Brazil (PM-AL).
利用警察巡逻数据预测和预防犯罪:挑战与前景
时空犯罪分析与预测的目的是识别空间和时间上的犯罪形态。在以前的工作中,犯罪预测是通过从数据中识别热点来实现的,热点指的是街道上犯罪活动频繁的地区。通过集中精力在这些地方,警察的巡逻预计会更有效率,从而减少犯罪活动。然而,很少有研究集中在调查警察巡逻如何影响犯罪,以及它是否可以预测犯罪活动。在本文中,我们讨论了这一问题的主要挑战,并描述了在考虑犯罪和警察巡逻时空数据的情况下,为开发一种强大的方法来表示、可视化分析和构建犯罪活动预测因子方面正在进行的一些工作。作为案例研究,我们使用了来自巴西阿拉戈斯州军事警察(PM-AL)的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信