Decentralizing Air Traffic Flow Management with Blockchain-based Reinforcement Learning

T. Duong, Ketan Kumar Todi, Umang Chaudhary, Hong Linh Truong
{"title":"Decentralizing Air Traffic Flow Management with Blockchain-based Reinforcement Learning","authors":"T. Duong, Ketan Kumar Todi, Umang Chaudhary, Hong Linh Truong","doi":"10.1109/INDIN41052.2019.8972225","DOIUrl":null,"url":null,"abstract":"We propose and implement a decentralized, intelligent air traffic flow management (ATFM) solution to improve the efficiency of air transportation in the ASEAN region as a whole. Our system, named BlockAgent, leverages the inherent synergy between multi-agent reinforcement learning (RL) for air traffic flow optimization; and the rising blockchain technology for a secure, transparent and decentralized coordination platform. As a result, BlockAgent does not require a centralized authority for effective ATFM operations. We have implemented several novel distributed coordination approaches for RL in BlockAgent. Empirical experiments with real air traffic data concerning regional airports have demonstrated the feasibility and effectiveness of our approach. To the best of our knowledge, this is the first work that considers blockchain-based, distributed RL for ATFM.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose and implement a decentralized, intelligent air traffic flow management (ATFM) solution to improve the efficiency of air transportation in the ASEAN region as a whole. Our system, named BlockAgent, leverages the inherent synergy between multi-agent reinforcement learning (RL) for air traffic flow optimization; and the rising blockchain technology for a secure, transparent and decentralized coordination platform. As a result, BlockAgent does not require a centralized authority for effective ATFM operations. We have implemented several novel distributed coordination approaches for RL in BlockAgent. Empirical experiments with real air traffic data concerning regional airports have demonstrated the feasibility and effectiveness of our approach. To the best of our knowledge, this is the first work that considers blockchain-based, distributed RL for ATFM.
基于区块链的强化学习去中心化空中交通流量管理
我们提出并实施分散的智能空中交通流量管理(ATFM)解决方案,以提高整个东盟地区的航空运输效率。我们的系统名为BlockAgent,利用多智能体强化学习(RL)之间的内在协同作用来优化空中交通流量;而正在兴起的区块链技术则是一个安全、透明、去中心化的协调平台。因此,BlockAgent不需要一个集中的权限来进行有效的ATFM操作。我们在BlockAgent中为RL实现了几种新的分布式协调方法。基于区域机场实际空中交通数据的实证实验证明了该方法的可行性和有效性。据我们所知,这是第一个考虑为ATFM考虑基于区块链的分布式RL的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信