Monadic second order probabilities in algebra. Directly representable varieties and groups

P. Idziak, Jerzy Tyszkiewicz
{"title":"Monadic second order probabilities in algebra. Directly representable varieties and groups","authors":"P. Idziak, Jerzy Tyszkiewicz","doi":"10.1090/dimacs/033/06","DOIUrl":null,"url":null,"abstract":"We analyze the question of existence of asymptotic cumulative probabilities for monadic second order deenable properties of nite algebras. We focus our attention on the directly representable varieties and on the variety of groups. We prove in a very strong way that some recently proven rst-order 0{1 laws and limit laws for these varieties cannot be extended to monadic second order logic. Namely, if the function (n; A) 7 ! pr n fAg] assigning probabilities to structures is recursive, then the 0{1 law holds according to the sequence fpr n g = pr 1 ; pr 2 ; : : : of probabilities ii asymptotically there exists fpr n g-almost surely precisely one algebra. Similarly, the convergence law holds ii asymptotically there are no large algebras according to fpr n g:","PeriodicalId":363831,"journal":{"name":"Logic and Random Structures","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Random Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/033/06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We analyze the question of existence of asymptotic cumulative probabilities for monadic second order deenable properties of nite algebras. We focus our attention on the directly representable varieties and on the variety of groups. We prove in a very strong way that some recently proven rst-order 0{1 laws and limit laws for these varieties cannot be extended to monadic second order logic. Namely, if the function (n; A) 7 ! pr n fAg] assigning probabilities to structures is recursive, then the 0{1 law holds according to the sequence fpr n g = pr 1 ; pr 2 ; : : : of probabilities ii asymptotically there exists fpr n g-almost surely precisely one algebra. Similarly, the convergence law holds ii asymptotically there are no large algebras according to fpr n g:
代数中的一元二阶概率。可直接表示的品种和组
研究了一类单进二阶可灭性的渐近累积概率的存在性问题。我们把注意力集中在直接可表征的品种和群体的多样性上。我们强有力地证明了最近证明的一些关于这些变体的一阶0{1定律和极限定律不能推广到一元二阶逻辑中。即,如果函数(n;A) 7个!pr ng]为结构分配概率是递归的,则根据序列fpr ng = pr 1, 0{1定律成立;Pr 2;在概率ii的情况下,FPR在g中几乎可以精确地存在于一个代数中。同样地,收敛律渐近地证明不存在根据fpr ng的大代数:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信